HP Fortify Static Code Analyzer

Software Version 4.10

e
User Guide

Document Release Date: April 2014
Software Release Date: April 2014

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with
FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice

© Copyright 2014 HewlettPackard Development Company, L.P.
Documentation Updates

The title page of this document contains the following identifying information:

» Software Version number

* Document Release Date, which changes each time the document is updated

» Software Release Date, which indicates the release date of this version of the software

To check for recent updates or to verify that you are using the most recent edition of a document, go to:
http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to:
http://h20229.www2.hp.com/passpor t-registration.html

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your HP sales representative for details.

Part Number: 1-16b3-2014-04-410-01

Contacting Fortify Software

If you have questions or comments about any part of this guide, contact Fortify Software at:

Technical Support
650.735.2215
fortifytechsupport@hp.com

Corporate Headquarters

Moffett Towers
1140 Enterprise Way
Sunnyvale, CA 94089

650.358.5600

contact@fortify.com

Website

http://www.hpenterprisesecurity.com

About the HP Fortify Software Security Center Documentation Set

The HP Fortify Software Security Center documentation set contains installation, user, and deployment guides
for all HP Fortify Software Security Center products and components. It also includes technical notes and release
notes that describe new features, known issues, and last minute updates. The latest versions of these documents
are available on the HP Software Product Manuals site:

http://h20230.www2.hp.com/selfsolve/manuals

FDRTIFY Preface iii

The following table tracks changes made to this guide.

FORTIFY

Software Release-version Date Change

3.90-01 4/12/2013 Added new introductory chapter and this Change Log.

4.00-01 6/10/2013 Added Maven Integration appendix.

4.00-01 7/8/2013 Added Parallel Analysis Mode appendix and introductory
paragraph about feature to the Introduction chapter.

4.00-01 7/15/2013 Added Issue Tuning appendix.

4.10-01 3/22/2014 Updated i0S section.
Change Log iv

PrefaCe il

Contacting Fortify SOftware. e iii
Technical SUPPOTt. e e e e iii
Corporate HeadqUarters.u ettt ettt ettt e e e iii
R T=Y 0 U iii

About the HP Fortify Software Security Center Documentation Set ..., iii

Change LOg . . e e iv
Chapter 1: INtrodUCtionvv i s s i i e e ss s s s s s sssannnsssssnnnnnsssssssnnnnsssssnnnns 10

About the Intended AUdIENCEttt e e 10

About the HP Fortify Software Security Center COmMPONENntS.ouvvrvueitineeieiei i aenenn, 10

Related DOCUMENTS.ottt e et e e et e e e e e e e e e 11

Chapter 2: HP Fortify Static Code Analyzerivviiiurreiinninnerrrrsssssnsssssssssnnsssssnnns 12

About HP Fortify Static Code Analyzerot e i i 12
About Parallel ANalysis.uui i 12
ADOUL ANALYZETS. . . oottt e e 12
About the ANalysis ProCess e e 13
About Analysis COMMANAS o.utit ittt ettt et e e e e a et a i 14
About Memory Considerationsiiuieint i 14
About the Translation Phase. i 14
About the Analysis Phase.o i e e e e 15
About Verification of the Translation and Analysis Phase.................cc it 15
About the HP Fortify Scan Wizardo e i 16
About HP Fortify CloudScanuuuiii i e e e e 16

Chapter 3: Translating Java Codeouuuiiuteeinniinneeranssansrsssassnnnssessssnnnssssssnnns 17

About Java Command LiNe SYNtax.uuuetetteit ettt et e e e e 17

About Java Command Line EXamples. ... e 17

Integrating with Ant using the HP Fortify Ant Compiler Adapter............c.coiiiiiiiiiiiiiiiinenn. 18

Handling Resolution Warnings. e e e et 18
JaVa WarningS. . .ot e 19

USINg FINdBUES. . . .o oo e e e 19

Translating J2EE Applications e e 20
Translating the Java Files.o e 20
Translating JSP Projects, Configuration Files, and Deployment Descriptors 20
J2EE WaImingsS . oottt ittt it et e e e e e 20

Chapter 4: Translating .NET Source Codeuutiiiutriinrrinnr it rnatrnnrianrernarennnnes 21

About the Visual Studio Command Prompt...........coeuiuini e 21

About Visual Studio NET e e e 21

FD RTIFY’ Contents v

Translating Simple .NET Applicationsot 22

Translating ASP.NET 1.1 (Visual Studio Version 2003) Projects..........c.oviiiiiiiiiiiiiiiiinenn. 23
Handling Resolution Warnings.t e e e aeenes 23
ADBOUL INET Warningsottt e e e e et ettt 24

ADBOUt ASP.INET Warningsvoei ittt it i ettt e et e e et 24
Chapter 5: Translating C/C++ Codeottt iiiai it aaasassssasannnsrssannnnnnsssssnnns 25
About C and C++ Command Line SYntax.uueeinee i i i aeae e 25

C and C++ Command Line Examplesot i e 25

About Integrating with MaKe e 25
Using the HP Fortify Touchless Build Adapter.ouiuiiiiiii i 25
Modifying a Makefile to Invoke SCA. i e e 26

About the HP Fortify Build MONItor e e ae e 26
Configuring HP Fortify Build Monitor.o i ae e 27
Monitoring BUilds e 27
Monitoring a Project Exampleooiuiii 28

About Command Line Builds in Visual Studio NET ... 28

About Command Line Builds in Visual Studio 6.0...........ccooiiiiiiii e 28
Chapter 6: Translating ABAP /4.c.oiiiii ittt iiaa i aasaaan s ssaaannsssssannnnnssssssnnns 29
About Translating ABAP /4 Codeot e e e e 29
About Scanning ABAP Code. ot 29
ADOULt INCLUDE ProCeSSIng. . . .o e ittt ittt et et e e ettt et et e e et e et enes 29
Overview of the ProCess v i e e 29
About the Transport REQUESTttt e 30
Create @ Transaction ODbJeCt.v ettt i e e e 30
Adding Fortify SCA to Your Favorites List (optional) ... 33
Running the HP Fortify ABAP EXtractor.o.oniiri i it aeenes 35
Chapter 7: Translating FlexX.ttt ittt st isa i s s iaa s sanannnssassannns 37
About the Command-Line Optionst i 37
About ActionScript Command Line SYntaxccouiiuie it 37
ActionScript Command Line EXamples e 38
About Handling Resolution Warningso.uuueieiuir e 38
About ActionScript Warningso e ettt e e 38
Chapter 8: Translating Code for Mobile Platformsoiiiiiiii ittt s i iiiiae i annns 39
About Translating Objective-C Code.t e e it ieae e 39

P O O QUISIEES . . ottt e 39

About Objective-C Command Line Syntaxuiuiieiiiiii it ie i aieaeanns 39
Objective-C Command Line EXample.ot 39

Xcode ComPiler ErTOrsttt ettt e e e 39

FD RTIFY’ Contents vi

About Objective-C oniPhone.o e 40

About Translating Google Android Codeot i i 40
MIgration ISSUES ... vt e e 40
Chapter 9: Translating Other Languages.iuutiiit it irii i eaaaraanreannreannnes 41
About Command Line Syntax for Other Languageso.ouirininaniiiin i 41
Configuration ConSIderations.ttt ettt 42
Configuring Python.o 42
Configuring ColdFUSION e i et 42
Configuring the SQL EXteNSION. et e e e i 42
Configuring ASP/VBScript Virtual ROOtSot e 43
Other Language Command Line Exampleso i 44
Translating PL/SQL EXample e e e 44
Translating T-SQL Example. e e 44
Translating PHP Example.o e 44
Translating Classic ASP written with VBScript Example ...t 45
Translating JavaScript EXample. e 45
Translating VB Script File Exampleo e 45
Translating COBOL Code. uit ittt it es 45
Supported Technologies. e e 45
Preparing COBOL Source Files for Translationo i 45
About COBOL Command Line SYNtaxcueuieieitii e 46
About Auditing COBOL SCamnSttt ettt e et 46
Chapter 10: Troubleshooting and SUPPOTt.cutiiii ittt i sraa s eaanreannnes 47
Using the Log File to Debug Problems. e e 47
About the Translation Failed Message.ot it 47
About JSP Translation Problemsot i i e e e e e 47
About ASPX Translation Problems 48
About C/C++ Precompiled Header Files. e 48
About Reporting Bugs and Requesting Enhancements. 48
Appendix A: Command Line Interface. i e e e 50
L0001 DU)0 T o =3 50
ANALYSIS OPTIONS .. ettt ittt ettt e e e e 51
Python Option.o e 52

(000) U B 311153 103 a0 o1 5 (0) o -3 52
JaVa/J2EE QP IOMS. . .ottt et e e e e e 53
40)T) U3 53
Build Integration OPtions.ttt it e et et et et e e 54

DI OO IV S L ettt ettt e e e 54
RUNEIME OPtiOMNS . . oot e e e e e e e e et e e e 55
L0139 =2 0515 () 413 56
SPECHYINg Files. .o e 56

FD RTIFY’ Contents vii

Appendix B: Parallel Analysis MOdeottt e e 57

About Parallel Analysis MOdeot e e e e e e 57
Hardware ReqUITEIMENTSttt et e e e e e i e et aeae e 57
Configuring Parallel Analysis Modeooiuinii e 57
Running in Parallel Analysis Mode 58
Appendix C: Using the sourceanalyzer Ant Task. o i e e e e e e 59
About the sourceanalyzer ANt TasKuuiiiiii e e e e 59
Using the Ant Sourceanalyzer Task i 59

DN o U0 0} 013 U 60
Sourceanalyzer Task OPtionSot et e e e e 61
Appendix D: Advanced OptionS v ittt e 65
AbOUL FIlter FIles . . .o e e e 65
Filter File Creation Example et eae e 65

Using Properties to Control Runtime Optionsouiiuiieii i i 68
Specifying the Order of Properties.ouiii i e i 68
Appendix E: MSBUIld INtegrationttt e 74
About MSBuild INtegration i e 74
INStallation . . oo e 74
Setting Windows Environment Variables for Touchless Integration of SCA. ...t 74
Adding Custom Tasks to your MSBuild Projectouiuinii e 75
Adding Custom Tasks to YOUT Projecto e 76
Adding Fortify. TranslateTasK.ot e e 76

Adding Fortify.ScanTask. e 77

Adding Fortify.CleanTasK.u i e e e e e 77

Adding Fortify. SSCTasK. . .. v et e e 77

Adding Fortify.CloudScanTaskK.ot e 78
Appendix F: Maven INtegration v ottt e 79
Aboutthe Maven PIUugin i e e e 79
Installing the Maven PIUugin. i e it 79
Updating the Maven PIugin e e 80
Editing the Plugin Source Files. i e 80

Testing the Plugino e e 81

Using the Maven PIUgin. oo i 81
Excluding Files from the Scan. e 82
Uninstalling the Maven Plugino i 83
Additional DocUMEeNtatioN. u e e 83
Appendix G: HP Fortify Scan Wizard.ot e e 84

FD RTIFY’ Contents viii

About the Fortify Scan Wizard e e 84

Appendix H: Sample Files.o e 85
Aboutthe Sample Files e 85
BasiC SamMIPIES . .ottt it e e e e 85
Advanced SamPles 86
APPENIX 12 ISSUE TUNING v v ittt ettt e e e e e e e e et e e e e e 89
ADOUL ISSUE TUNING. . ..ottt ettt e e et e e et e e e et et e et e e et a it e 89
About Wrapper Detectiono e i e 89

About Interprocedural Constant Propagationo i 90
About Selective Map Operation Tracking. ..o i 90

FD RTIFY’ Contents ix

This document provides instructions for using HP Fortify Static Code Analyzer.

About the Intended Audience

This guide is intended for people responsible for security audits and secure coding. HP Fortify Static Code
Analyzer provides a suite of analyzers and application components.This guide provides instructions on
scanning code on most of the major programming platforms.

About the HP Fortify Software Security Center Components

HP Fortify Static Code Analyzer is component of an HP Fortify Software Security Center installation. The
installation consists of one or more of the following analyzers:

* HP Fortify Static Code Analyzer: Analyzes your build code according to a set of rules specifically tailored to
provide the information necessary for the type of analysis performed.

¢ HP Fortify Runtime Application Protection: Monitors and protects deployed applications from common
attacks, unintended use, and targeted hacking. In addition, best security practices, such as input verification
and proper exception handling, can be consistently applied to deployed applications.

¢ HP Fortify SecurityScope: Identifies vulnerabilities in pre-deployment applications during the QA phase,
preventing exposure to security flaws before they are exploited.

An HP Fortify Software Security Center installation may also include one or more of the following application
tools:

¢ HP Fortify Audit Workbench: provides a graphical user interface for HP Fortify Static Code Analyzer that
helps you organize, investigate, and prioritize analysis results so that security flaws can be fixed quickly.

¢ HP Fortify Plugin for Eclipse: integrates with the Eclipse development environment and adds the ability to
scan and analyze the entire code base of a project and apply hundreds of software security rules that identify
the vulnerabilities in your Java code. The results are displayed within the IDE, along with descriptions of
each of the security issues and suggestions for their elimination.

* HP Fortify Eclipse Remediation Plug-in: integrates with the Eclipse development environment. The Eclipse
Remediation Plug-in is a lightweight plug-in option for developers who need remediation functionality but
do not need the scanning and auditing capabilities of Audit Workbench or the full Eclipse Plugin.

¢ HP Fortify Package for Microsoft Visual Studio: integrates with Visual Studio Premium and Visual Studio
Professional to locate security vulnerabilities in your solutions and packages and displays the scan results in
Visual Studio. The results include a list of issues uncovered, descriptions of the type of vulnerability each
issue represents, and suggestions on how to fix them.

¢ HP Fortify Remediation Package for Visual Studio: integrates with Microsoft Visual Studio Premium and
Visual Studio Professional integrated development environments (IDEs). The HP Fortify Remediation
Package for Visual Studio is a lightweight plug-in option for developers who need remediation functionality
but do not need the scanning and auditing capabilities of Audit Workbench or the full Visual Studio package.

« HP Fortify Extension for JDeveloper: integrates with the JDeveloper integrated development environment
(IDE) and adds the ability to scan and analyze the entire code base of a project and apply hundreds of
software security rules that identify the vulnerabilities in your code.

¢ HP Fortify Remediation Plugin for Intelli]: integrates with the Intelli] Integrated Development Environment
(IDE) and adds the ability to scan and analyze the entire code base of a project and apply hundreds of
software security rules that identify the vulnerabilities in your code.

FDRT]FY' Chapter 1: Introduction 10

Related Documents
The following documents provide additional information about HP Fortify Static Code Analyzer:

e HP Fortify Static Code Analyzer User Guide
This document provides instructions on using the analyzers to identify vulnerabilities in your code.
e HP Fortify Static Code Analyzer Utilities User Guide

This document provides information on the command-line tools that provide additional management and
access to the functions provided by SCA.

FDRT]FY‘ Chapter 1: Introduction 11

This chapter covers the following topics:

¢ About HP Fortify Static Code Analyzer
e About Analyzers
e About the Analysis Process

About HP Fortify Static Code Analyzer

HP Fortify Static Code Analyzer (SCA) is a set of software security analyzers that search for violations of
security-specific coding rules and guidelines in a variety of languages. The rich data provided by SCA language
technology enables the analyzers to pinpoint and prioritize violations so that fixes can be fast and accurate. The
analysis information produced by SCA helps you deliver more secure software, as well as making security code
reviews more efficient, consistent, and complete. This is especially advantageous when large code bases are
involved. The modular architecture of SCA allows you to quickly upload new third-party and customer-specific
security rules.

At the highest level, using SCA involves:

1. Choosing to run SCA as a stand-alone process or integrating SCA as part of the build tool
2. Translating the source code into an intermediate translated format

3. Scanning the translated code and producing security vulnerability reports

4

. Auditing the results of the scan, either by transferring the resulting FPR file to HP Fortify Audit Workbench
or HP Fortify Software Security Center for analysis, or directly with the results displayed on screen

Note: For information on transferring results to HP Fortify Audit Workbench and creating customer-specific
security rules, see the HP Fortify Audit Workbench User’s Guide.

About Parallel Analysis

Beginning with version 4.00, SCA supports parallel processing for large projects. If your project scan takes
longer than an hour or two to complete, you can dramatically decrease the time necessary to complete the scan
by enabling parallel processing. Parallel processing allows you to take advantage of multiple CPUs and cores
within a single machine and automatic memory tuning.

For information on enabling parallel analysis for your projects, see Appendix B: Parallel Analysis Mode.

About Analyzers

SCA comprises six distinct analyzers: Dataflow, Control flow, Semantic, Structural, Configuration, and Buffer.
Each analyzer accepts a different type of rule specifically tailored to provide the information necessary for the
corresponding type of analysis performed. Rules are definitions that identify elements in the source code that
may result in security vulnerabilities or are otherwise unsafe.

Rules are organized according to the analyzer that uses them, resulting in rules that are specific to the Dataflow,
Control flow, Semantic, Structural, and Configuration analyzers. These rule categories are further divided to
reflect the category of the issue or type of information represented by the rule.

The installation process downloads and updates the set of rules used by SCA on your system. HP updates the
specific rules contained within the HP Fortify Secure Coding Rulepacks on a regular basis. The Customer Portal
offers updated Rulepacks.

The following table lists and describes each SCA analyzer.

FORTIFY Chapter 2: HP Fortify Static Code Analyzer 12

Table 1: HP Fortify Static Code Analyzer

Analyzer

Description

Dataflow

The Dataflow Analyzer detects potential vulnerabilities that involve tainted
data (user-controlled input) put to potentially dangerous use. The Dataflow
Analyzer uses global, inter-procedural taint propagation analysis to detect
the flow of data between a source (site of user input) and a sink
(dangerous function call or operation). For example, the Dataflow Analyzer
detects whether a user-controlled input string of unbounded length is
being copied into a statically sized buffer, and detects whether a user
controlled string is being used to construct SQL query text.

Control flow

The Control flow Analyzer detects potentially dangerous sequences of
operations. By analyzing control flow paths in a program, the Control flow
Analyzer determines whether a set of operations are executed in a certain
order. For example, the Control flow Analyzer detects time of check/time of
use issues and uninitialized variables, and checks whether utilities, such as
XML readers, are configured properly before being used.

Semantic

The Semantic Analyzer detects potentially dangerous uses of functions and
APIs at the intra-procedural level Its specialized logic searches for buffer
overflow, format string, and execution path issues, but is not limited to
these categories. A call to any potentially dangerous function can be
flagged by the Semantic Analyzer. For example, the Semantic Analyzer
detects deprecated functions in Java and unsafe functions in ¢/c++, such as
gets ().

Structural

The Structural Analyzer detects potentially dangerous flaws in the structure
or definition of the program. By understanding the way programs are
structured, the Structural Analyzer identifies violations of secure
programming practices and techniques that are often difficult to detect
through inspection because they encompass a wide scope involving both
the declaration and use of variables and functions. For example, the
Structural Analyzer detects assignment to member variables in Java
servlets, identifies the use of loggers that are not declared static final, and
flags instances of dead code that will never be executed because of a
predicate that is always false.

Configuration

The Configuration Analyzer searches for mistakes, weaknesses, and policy
violations in an application's deployment configuration files. For example,
the Configuration Analyzer checks for reasonable timeouts in user sessions
in a web application.

Buffer

The Buffer Analyzer detects buffer overflow vulnerabilities that involve
writing or reading more data than a buffer can hold. The buffer can be
either stack-allocated or heap-allocated. The Buffer Analyzer uses limited
inter-procedural analysis to determine whether or not there is a condition
that causes the buffer to overflow. If all execution paths to a buffer lead to a
buffer overflow, SCA reports it as buffer overflow vulnerability and points
out the variables that could cause the overflow. If some, but not all,
execution paths to a buffer lead to a buffer overflow and the value of the
variable causing the buffer overflow is tainted (user-controlled), then SCA
will report it as well and display the data flow trace to show how the
variable is tainted.

About the Analysis Process

There are four distinct stages that make up the SCA source code analysis process:

Build Integration: The first stage in the process involves deciding whether to integrate SCA into the build

compiler system.

FORTIFY’

Chapter 2: HP Fortify Static Code Analyzer

13

¢ Translation: Next, source code is gathered using a series of commands and then it is translated into an
intermediate format associated with a build ID. The build ID is usually the name of the project being
scanned.

¢ Analysis: Source files identified during the translation phase are scanned and an analysis results file, typically
in the HP Fortify project (FPR) format, is generated. FPR files are indicated by the . £pr file extension.

» Verification of the translation and analysis: Ensure that the source files were scanned using the correct
Rulepacks and that no significant errors were reported.

About Analysis Commands
The following is an example of the sequence of commands you use to analyze code:

sourceanalyzer -b <build id> -clean
sourceanalyzer -b <build ids>
sourceanalyzer -b <build id> -scan -f results.fpr

To analyze more than one build at a time, add the additional builds as parameters:

sourceanalyzer -b <build idl> -b <build id2> -b <build id3> -scan -f results.fpr

About Memory Considerations

When running SCA, the amount of physical RAM required is dependent on a number of factors. These factors,
which include the size and complexity of the source file, make it impossible to quantify and provide guidance --
each customer situation is unique. If you do encounter a low memory error, increasing the amount of memory
available to SCA may resolve the problem.

By default, SCA uses up to 600 MB of memory:. If this is not sufficient to analyze a particular code base, you
might have to provide more memory in the scan phase. This can be done by passing the -xmx option to the
sourceanalyzer command.

For example, to make 1000 MB available to SCA, include the option -Xmx1000M.
You can also use the sca vM_0OPTS environment variable to set the memory allocation.

Note: Do not allocate more memory for SCA than the machine has available, because this will degrade
performance. As a guideline, assuming that no other memory-intensive processes are running, do not allocate
more than 2/3 of the available physical memory.

About the Translation Phase
The basic command line syntax for performing the first analysis phase, translating the files, is:
sourceanalyzer -b <build ids>

The translation phase consists of one or more invocations of SCA using the sourceanalyzer command. A build
ID (-b <build_ids)is used to tie together the invocations.

Subsequent invocations of sourceanalyzer add any newly specified source or configuration files to the file list
associated with the build ID.

At the end of translation, you can use -show-build-warnings to list all warnings and errors that were
encountered during the translation process:

sourceanalyzer -b <build id> -show-build-warnings

To view all of the files associated with a particular build ID, use the -show-files directive:
sourceanalyzer -b <build id> -show-files

The following chapters describe how to translate different types of source code:

¢ Translating Java Code

FORTIFY Chapter 2: HP Fortify Static Code Analyzer 14

¢ Translating .NET Source Code

¢ Translating C/C++ Code

e Translating ABAP/4

¢ Translating Flex

¢ Translating Code for Mobile Platforms
¢ Translating Other Languages

About SCA Mobile Build Sessions

An SCA mobile build session allows a project to be translated on one machine and analyzed on another. When
you create an SCA mobile build session, a .mbs file that includes the files needed for the analysis phase is created
in the build session directory. The .mbs file is then moved to a different machine for analysis.

Creating a Mobile Build Session

On the machine where the translation was done, issue the following command to generate an SCA mobile build
session:

sourceanalyzer -b <build id> -export-build-session <file.mbs>

where <file.mbs> is the file name you assign for the SCA mobile build session.

Importing a Mobile Build Session

Once you've moved the .mbs file to the machine where you want to run the analysis, issue the following
command:

sourceanalyzer -import-build-session <file.mbs>
where <file.mbs> is the SCA mobile build session.

Once you have imported your SCA mobile build session, you are ready to move on to the analysis phase.

About the Analysis Phase

This topic describes the syntax for the analysis phase: scanning the intermediate files created during the
translation and creating the analysis results file. The phase consists of one invocation of sourceanalyzer. You
specify the build ID and include the -scan directive and any required analysis or output options.

Note: By default, SCA includes the source code in the FPR.

The basic command line syntax for the analysis phase is:

sourceanalyzer -b <build id> -scan -f results.fpr

To run an analysis more than one build at a time, add the additional builds to the command line:
sourceanalyzer - b <build idl> -b <build id2> -b <build id3> -scan -f results.fpr
To run a silent analysis on more than one build at a time, add the additional builds to the command line:

sourceanalyzer -b <build-idls> -b <build-id2> -b <build-id3> -auth-silent -scan -f
results. fpr

About Verification of the Translation and Analysis Phase

The Result Certification feature of Audit Workbench verifies that the analysis is complete. Result certification
shows specific information about the code scanned by SCA, including:

o List of files scanned, with file sizes and timestamps

e Java crasspaTi used for the translation

FORTIFY Chapter 2: HP Fortify Static Code Analyzer 15

¢ List of Rulepacks used for the analysis
¢ List of SCA runtime settings and command line arguments
¢ List of errors or warnings encountered during translation or analysis

¢ Machine/platform information

To view result certification information, open the FPR file in Audit Workbench and select Tools - Project
Summary - Certification.

About the HP Fortify Scan Wizard

HP Fortify Scan Wizard is a utility that allows you to quickly and easily prepare and scan project code using SCA.
The Scan Wizard allows you to run your scans locally, or, if you are using HP Fortify CloudScan, in a cloud of
computers provisioned for taking care of the processor-intensive scanning phase of the analysis. For more
information, see Appendix G: HP Fortify Scan Wizard on page 84.

About HP Fortify CloudScan

With HP Fortify CloudScan (CloudScan), users of HP Fortify Static Code Analyzer can better manage their
resources by offloading the processor-intensive scanning phase of the analysis from their build machines to a
cloud of machines provisioned for this purpose.

After the translation phase is completed on the build machine, an SCA mobile build session is generated and
CloudScan moves it to an available machine for scanning. In addition to freeing up the build machines, this
process makes it easy to grow the system by adding more resources to the cloud as needed, without having to
interrupt your build process.

In addition, users of Software Security Center can direct CloudScan to output the FPR file directly to the server.

For more information on HP Fortify CloudScan, see the HP Fortify CloudScan Installation, Configuration, and
Usage Guide.

FORTIFY Chapter 2: HP Fortify Static Code Analyzer 16

This chapter covers the following topics:

¢ About]Java Command Line Syntax

e About]Java Command Line Examples

¢ Integrating with Ant using the HP Fortify Ant Compiler Adapter
¢ Handling Resolution Warnings

¢ Using FindBugs

¢ Translating J2EE Applications

About Java Command Line Syntax

The basic command line syntax for Java is:
sourceanalyzer -b <build id> -cp <classpath> <file list>

With Java code, SCA can either emulate the compiler, which may be convenient for build integration, or accept
source files directly, which is more convenient for command line scans.

Note: For a description of all the options you can use with the sourceanalyzer command, see Command Line
Interface on page 50.

To tell SCA to emulate the compiler, enter:
sourceanalyzer -b <build id> javac [<translation optionss>]
To pass files directly to SCA, enter:

sourceanalyzer -b <build id> -cp <classpath> [<translation options>]
<files>|<file specifierss>

where:

<translation optionss>

are options passed to the compiler.
-cp <classpaths>

specifies the CLASSPATH to be used for the Java source code. A CLASSPATH is a list of build directories and jar
files. The format is the same as expected by javac (colon or semicolon-separated list of paths). You can use SCA
file specifiers.

-cp "build/classes:lib/*.jar"
Note: If you do not specify the classpath with this option, the cLasspaTu environment variable is used.

For more information, see Java/J2EE Options on page 53. For information about file specifiers, see Specifying
Files on page 56.

About Java Command Line Examples

To translate a single file named MyServlet.java with j2ee.jar on the CLASSPATH, enter:
sourceanalyzer -b MyServlet -cp lib/j2ee.jar MyServlet.java

To translate all . java files in the src directory using all jar files in the 1ib directory as a cLasspaTH:

sourceanalyzer -b MyProject -cp "lib/*.jar" "src/**/*.java"

FDRT]FY‘ Chapter 3: Translating Java Code 17

To translate and compile the MyCode . java file while using the javac compiler:

sourceanalyzer -b mybuild javac -classpath libs.jar MyCode.java

Integrating with Ant using the HP Fortify Ant Compiler Adapter

SCA provides an Ant Compiler Adapter that you can use as an easy way to translate Java source files if your
project uses an Ant build file. This integration requires setting only two Ant properties, and can be done on the
command line without modifying the Ant build.xml file. When the build runs, SCA intercepts all javac task
invocations and translates the Java source files as they are compiled. Note that any JSP files, configuration files,
or any other non-Java source files that are part of the application need to be translated in a separate step.

The following steps must be taken to use the Compiler Adapter:

¢ The sourceanalyzer executable must be on the system PATH.

* sourceanalyzer.jar (located in Core/1ib) must be on Ant's classpath.

e Thebuild.compiler property must be setto com.fortify.dev.ant.SCACompiler.
¢ The sourceanalyzer.buildid property must be set to the build ID.

The following examples show how to run an Ant build using the Compiler Adapter without modifying the build
file:

ant -Dbuild.compiler=com.fortify.dev.ant.SCACompiler
-Dsourceanalyzer.buildid=MyBuild
-1lib <install dir>/Core/lib/sourceanalyzer.jar

The -11ib option is only available in Ant version 1.6 or higher. In older versions you must set the CLASSPATH
environment variable or copy sourceanalyzer.jar to Ant's lib directory.

Alternatively, with Ant 1.6 or newer, the following shorthand can be used to run Ant with the compiler
adapter:

sourceanalyzer -b <build-id> ant [ant-options]

By default, 600 MB of memory is allocated to SCA for translation. Increase the memory allocation when using
the Ant Compiler Adapter using the -Dsourceanalyzer.maxHeap option as follows:

ant -Dbuild.compiler=com.fortify.dev.ant.SCACompiler
-Dsourceanalyzer.buildid=MyBuild
-1lib <install directorys/Core/lib/sourceanalyzer.jar
-Dsourceanalyzer.maxHeap=1000M

Handling Resolution Warnings

To see all warnings that were generated during your build, enter the following command before you start the
scan phase:

sourceanalyzer -b <build id> -show-build-warnings

FDRT]FY‘ Chapter 3: Translating Java Code 18

Java Warnings

You may see the following warnings for Java:
Unable to resolve type...

Unable to resolve function...

Unable to resolve field...

Unable to locate import...

Unable to resolve symbol...

Multiple definitions found for function...
Multiple definitions found for class...

These warnings are typically caused by missing resources. For example, some of the . jar and class files
required to build the application have not been specified. To resolve the warnings, make sure that you have
included all of the required files that your application uses.

Using FindBugs

FindBugs (http://findbugs.sourceforge.net) is a static analysis tool that detects quality issues in Java code. You
can run FindBugs with SCA and the results will be integrated into the analysis results file. Unlike SCA, which
runs on Java source files, FindBugs runs on Java bytecode. Therefore, before running an analysis on your
project, you should first compile the project and produce the class files.

To demonstrate how to run FindBugs automatically with SCA, compile the sample code, Wwarning.java, as
follows:

1. Go to the following directory:
<install directorys>/Samples/advanced/findbugs
2. Enter the following command to compile the sample:
mkdir build

javac -d build Warning.java
3. Scan the sample with FindBugs and SCA as follows:

sourceanalyzer -b findbugs sample -java-build-dir build Warning.java

sourceanalyzer -b findbugs sample -scan -findbugs -f findbugs_ sample.fpr
4. Examine the analysis results in Audit Workbench:
auditworkbench findbugs sample.fpr

The output contains the following issue categories:

¢ Bad casts of Object References (1)

¢ Dead local store (2)

¢ Equal objects must have equal hashcodes (1)
¢ Object model violation (1)

¢ Unwritten field (2)

¢ Useless self-assignment (2)

If you group by Analyzer, you can see that the SCA Structural Analyzer produced one issue and FindBugs
produced eight. The Object model violation issue produced by SCA on line 25 is similar to the Equal
objects must have equal hash codes issue produced by FindBugs. In addition, FindBugs produces two
sets of issues (Useless self-assignment and Dead local store)aboutthe same vulnerabilities on lines 6
and 7. To avoid overlapping results, apply the £ilter.txt filter file by using the -filter option during the

FDRT]FY' Chapter 3: Translating Java Code 19

scan. Note that the filtering is not complete because each tool filters at a different level of granularity. To
demonstrate how to avoid overlapping results, scan the sample code using filter.txt as follows:

sourceanalyzer -b findbugs sample -scan -findbugs -filter filter.txt
-f findbugs sample.fpr

Translating J2EE Applications

Translating J2EE applications involves processing Java source files and J2EE components such as JSP files,
deployment descriptors, and configuration files. While you can process all the pertinent files in a J2EE
application using a single-step process, your project may require that you break the procedure into its
components for integration in a build process or to meet the needs of various stakeholders within your
organization. The following sections provide information on each component, followed by an all-in-one
process.

Translating the Java Files

Earlier in this chapter we provided the command line instructions for translating Java files. When translating
J2EE applications, use the same procedure for translating the Java files within the application.

For examples, see About Java Command Line Examples on page 17.

Translating JSP Projects, Configuration Files, and Deployment Descriptors

In addition to translating the Java files in your J2EE application, you may also need to translate JSP files,
configuration files, and deployment descriptors. You can scan JSP files created with version 2.0 and above.
Your JSP files must be part of a Web Application Archive (WAR). If your source directory is already organized
in a WAR layout, you can translate the JSP files directly from the source directory. If this is not the case, you
may need to deploy your application and translate the JSP files from the deployment directory.

For example:
sourceanalyzer -b <build_id> ***.jsp ***.xml

where **\ * . §sp refers to the location of your * . jsp project files and \ **\ * . xm1 refers to the location of
your configuration and deployment descriptor files.

J2EE Warnings
You may see the following warnings for J2EE applications:

Could not locate the root (WEB-INF) of the web application. Please build your web
application and try again. Failed to parse the following jsp files:

<list of .jsp file names>

This warning displays because your Web application is not deployed in the standard WAR directory format or
does not contain the full set of required libraries. To resolve the warning, ensure that your web application is
in an exploded WAR directory format with the correct WeB-INF/1ib and WEB- INF/classes directories
containing all of the . jar and . class files required for your application. You should also verify that you have
all of the TLD files for all of the tags that you have and the corresponding . jar files with their tag
implementations.

FDRT]FY‘ Chapter 3: Translating Java Code 20

The chapter covers the following topics:

¢ About the Visual Studio Command Prompt

¢ About Visual Studio .NET

¢ Translating Simple .NET Applications

¢ Translating ASP.NET 1.1 (Visual Studio Version 2003) Projects

¢ Handling Resolution Warnings

This chapter describes how to use SCA to translate Microsoft Visual Studio .NET and ASP.NET applications
built with:

.NET Versions 1.1 and 2.0

¢ Visual Studio .NET version 2003
¢ Visual Studio .NET version 2005
¢ Visual Studio .NET version 2008
¢ Visual Studio .NET version 2010
e Visual Studio .NET version 2012
¢ Visual Studio .NET version 2013

SCA works on the Common Intermediate Language (CIL), and therefore supports all of the .NET languages that
compile to CIL, including C# and VB .NET.

Note: The easiest way to analyze a .NET application is to use the HP Fortify Package for Microsoft Visual Studio,
which automates the process of gathering information about the project.

About the Visual Studio Command Prompt

Visual Studio 2005 and higher include the Visual Studio Command Prompt. The Visual Studio Command
Prompt is located in the Visual Studio Tools directory of your Visual Studio installation. You should use this
command prompt in the instructions that follow.

About Visual Studio .NET

If you perform command line builds with Visual Studio .NET, you can easily integrate static analysis by
wrapping the build command line with an invocation of sourceanalyzer. For this to work, you must have the
Secure Coding Package for your version of Visual Studio installed.

The following example demonstrates the command line syntax for Visual Studio .NET:
sourceanalyzer -b my buildid devenv Samplel.sln /REBUILD debug

This performs the translation phase on all files built by Visual Studio. Be sure to do a clean or a rebuild so that
all files are included. You can then perform the analysis phase, as in the following example:

sourceanalyzer -b my buildid -scan -f results.fpr

Note: If your classic ASP/VBScript application uses virtual includes, for example,

<!--include virtual="/myweb/foo.inc”>

then you should specify the physical location of the myweb application by passing the following property value:

com. fortify.sca.ASPVirtualRoots=<semicoloon separated list of full paths to virtual
roots used>

FDRT]FY' Chapter 4: Translating .NET Source Code 21

For example, if the IIS virtual root /myweb is located at c: \webapps\myweb-folder, then your property value
should be:

-Dcom. fortify.sca.ASPVirtualRoots=c: \webapps\myweb-folder
If you add this line to the fortify-sca.properties file, you must escape the \ character, as in the following:

com.fortify.sca.ASPVirtualRoots=c:\\webapps\\myweb-folder

Translating Simple .NET Applications

You can also use SCA command line interface for processing .NET applications.
Prepare your application for analysis using one of the following methods:

e Perform a complete rebuild of your project with the “debug” configuration enabled. Compiling your project
with debug enabled provides information that SCA uses for presenting the results.

¢ Obtain all of the third-party 411 files, project output a11 files, and corresponding pdb files for your projects.
Note that SCA ignores any d11 file passed as an input argument if the corresponding pdb file does not exist in
the same folder. It is therefore imperative that you include all of the pab files for all your project a11 files.

Note: pdb files are not required for third-party libraries.
Run SCA to analyze the .NET application from the command line as follows:

e For Visual Studio .NET Version 2010, enter:

sourceanalyzer -vsversion 10.0 -b MyBuild
-libdirs ProjOne/Lib;ProjTwo/Lib ProjoOne/bin/Debug ProjTwo/bin/Debug

where:

e MyBuild is the build identifier

® DProjone/Lib;ProjTwo/Lib iS a semicolon-separated list of paths to folders or DLLs with third-party DLLs
e Projone/bin/Debug ProjTwo/bin/Debug are the output folders

¢ Use the following version numbers with the -vsversion parameter:

Table 2: Visual Studio .NET version numbers

Visual Studio .NET Release Version Number
Visual Studio .NET 2003 7.1

Visual Studio .NET 2005 8.0

Visual Studio .NET 2008 9.0

Visual Studio .NET 2010 10.0

Visual Studio .NET 2012 11.0

Visual Studio .NET 2013 12.0

Note: Standard .NET DLLs used in your project are automatically picked up by SCA, so you do not need to
include them in the command line.

If your project is large, you can perform the translation phase separately for each output folder using the
same build ID, as follows:

sourceanalyzer -vsversion <version number> -b <build id»>
-libdirs <paths> <folder_ 1>

sourceanalyzer -vsversion <version number> -b <build id>
-libdirs <paths> <folder_n>

FDRT]FY' Chapter 4: Translating .NET Source Code 22

where:

e <version numbers is either 7.1, 8.0, 9.0, 10.0, 11.0 or 12.0

e <build ids isthe build ID

* <paths> is a semicolon-separated list of paths to folders or DLLs with third-party DLLs
e <folder 1>and <folder ns are the output folders

Note: SCA requires the appropriate version of Visual Studio unless you are using MSBuild. For information of
using SCA with MSBuild, see Appendix E: MSBuild Integration on page 74.

Translating ASP.NET 1.1 (Visual Studio Version 2003) Projects

As discussed previously, SCA works on CIL generated by the .NET compilers. For ASP.NET projects, web
components such as aspx files need to be compiled before they can be analyzed. However, there is no standard
compiler for aspx files. The .NET 1.1 runtime automatically compiles them when they are accessed from a
browser.

To facilitate the aspx compilation phase, HP Fortify Software provides a simple tool that compiles all of the
aspx files in your project. The tool is located in the HP Fortify installation directory at:

\Tools\fortify aspnet compiler\fortify aspnet compiler.exe
To analyze ASP.NET 1.1 solutions:

1. Perform a complete rebuild of the solution.
2. For each of the web projects in the solution, delete the following folder:

$SYSTEMROOT%\Microsoft .NET\Framework\vl.1.4322\Temporary ASP.NET Files\<web application names>
3. For each of the web projects in the solution, run the following command:

fortify aspnet compiler <url to_the web site> <source root_ of the web project>

where:

<url_to_the web site> is the URL for your website, such as
http://localhost/WebApp

<source root of the web projects isthe source location of your web project, such as
<VS_project_ locations>\WebApp

4. Perform the translation phase for the DLLs built in Step 1. Enter the following command using the same
build ID as in the following steps:

sourceanalyzer -b <build id> "<VS project locations>***.dll"

5. Perform the translation phase for the web components. For each of the web projects in the solution, enter
the following when you invoke sourceanalyzer:

sourceanalyzer -b <build id> %$SYSTEMROOT%\Microsoft.NET\Framework\vl.1l.4322\Temporary ASP.NET
Files\<web application name>

6. Include the configuration files and any Microsoft T-SQL source files that you have:

sourceanalyzer -b <build id> "<solution_roots>***. config"
<"t-sgl srcs***.sqgl">

Note: These steps are all automated if you use the HP Fortify Package for Microsoft Visual Studio.

Handling Resolution Warnings

To see all warnings that were generated during your build, enter the following command before you start the
scan phase:

sourceanalyzer -b <build id> -show-build-warnings

FDRT]FY‘ Chapter 4: Translating .NET Source Code 23

About .NET Warnings
You may see the following warnings for .NET:

Cannot locate class... in the given search path and the Microsoft .NET Framework
libraries.

These warnings are typically caused by missing resources. For example, some of the .prw files required to
build the application have not been specified. To resolve the warnings, make sure that you have included all of
the required files that your application uses. If you still see a warning and the classes it lists are empty
interfaces with no members, you can ignore the warning. If the interface is not empty, contact Technical
Support.

About ASP.NET Warnings

You may see the following warnings for ASP.NET applications:
Failed to parse the following aspx files:

<list of .aspx file names>

This warning displays because your web application is not deployed correctly or does not contain the full set
of required libraries, or it uses the Global Access Cache (GAC). If your application is a .NET version 1.1
application, you may also have access issues from Microsoft IIS. Verify that you can access the application from
a browser without authentication or access errors. If your web application uses the GAC, you must add the prLn
files to the project separately to ensure a successful scan. SCA does not load prt files from the GAC.

FDRT]FY‘ Chapter 4: Translating .NET Source Code 24

This chapter covers the following topics:

¢ About C and C++ Command Line Syntax

¢ (Cand C++ Command Line Examples

¢ About Integrating with Make

¢ About the HP Fortify Build Monitor

e About Command Line Builds in Visual Studio .NET
¢ About Command Line Builds in Visual Studio 6.0

About C and C++ Command Line Syntax

The basic command line syntax for translating a single file is:

sourceanalyzer -b <build id> <compiler> [<compiler optionss>]

where:

<compilers isthe name of the compiler you want to use during a project build scan, such as gcc or cl.

<compiler options> are options passed to the compiler that are typically used to compile the file.

C and C++ Command Line Examples

The following is a simple usage example:

To translate a file named helloworld.c using the gcc compiler, enter:
sourceanalyzer -b my buildid gcc helloworld.c

Note: This also compiles the file.

About Integrating with Make
You can use either of the following methods to integrate SCA with Make:

¢ HP Fortify Touchless Build Adapter
¢ Modify a Makefile to Invoke SCA

Using the HP Fortify Touchless Build Adapter

The following section describes the different methods for using the touchless build adapter.

Using the sourceanalyzer Build Adapter Command
For example, to use the HP Fortify touchless build adapter to integrate with a python build script:
sourceanalyzer -b <build id> touchless python build.py

SCA runs the entire command following the "touchless"” keyword. When the command creates a new process
that SCA determines is a compiler, the command is processed by SCA.

For information about informing SCA about specially named compilers, see the com.fortify.sca.compilers.*
property in “Using Properties to Control Runtime Options” on page 68. Any build command that executes a
recognized compiler process can be used with this system; just replace the 'make' section of the above
command with the command used to run a build.

FORTIFY Chapter 5: Translating C/C++ Code 25

Note: The HP Fortify touchless build adapter does not function correctly if:

e The build script invokes the compiler with an absolute path or overrides the executable search path.

¢ The build script does not create a new process to run the compiler. Many Java build tools, including Ant,
operate this way.

Modifying a Makefile to Invoke SCA

To modify a makefile to invoke SCA, replace any calls to the compiler, archiver, or linker in the makefile with calls
to SCA. These tools are typically specified in a special variable in the makefile, as in the following example:

CC=gcc
CXX=g++
AR=ar

The step can be as simple as prepending these tool references in the makefile with SCA and the appropriate
options:

CC=sourceanalyzer -b mybuild gcc
CXX=sourceanalyzer -b mybuild g++

AR=sourceanalyzer -b mybuild ar

About the HP Fortify Build Monitor

This section describes how to use HP Fortify Build Monitor to scan C/C++ projects automatically during a build
on Windows and view the results. It includes examples that use sample projects provided with SCA.

The following options are available from the HP Fortify Build Monitor menu:

Table 3: HP Fortify Build Monitor Options

Option Description

Monitor Enables the monitoring. Build Monitor intercepts and translate the next
build on the machine.

Build Done Stops the monitor after the build is complete.

Scan Scans the code that was monitored during the build

Scan Settings

Controls the Rulepacks and memory settings.

Set Results Folder

Controls where SCA outputs the results.

Stay on Top

Keeps the HP Fortify Build Monitor window on top of other windows.

Minimize to Tray

Shows the HP Fortify Build Monitor as an icon in the task bar.

Exit

Closes the HP Fortify Build Monitor.

Show Messages

Shows or hides the messages in the lower area of the window. Messages
include Scan Messages, Errors, and Monitor Driver information. You can
click Detailed Messages at the bottom of the window.

Help

Displays online help.

Reset

Resets the HP Fortify Build Monitor to its beginning state.

FORTIFY’

Chapter 5: Translating C/C++ Code

26

Configuring HP Fortify Build Monitor

This section covers setting up the results folder and setting SCA scan options.

Setting Up the Results Folder

HP Fortify Build Monitor outputs results in FPR format to a local folder. You can change the output folder. HP
Fortify Build Monitor replaces the results each time a scan is performed. Results are not archived.

To change the results folder:

1.

2.

Select Action > Set Results Folder.
The Browse for Folder dialog displays.
Select a folder and click OK.

HP Fortify Build Monitor will output the results to the selected folder.

Setting SCA Scan Options

HP Fortify Build Monitor scans the project using SCA. You can adjust the following scan settings:

Allocate memory: Increase or decrease the amount of memory allocated to SCA

Secure Coding Rulepacks and custom Rulepacks: Change which Rulepacks SCA uses to analyze the source
code

User: Only monitor builds run by the current user

To change the scan options:

1.

N

3.
4.
5.

Select Action > Scan Settings.

The HP Fortify Build Monitor: Scan Settings dialog displays.

To change the memory allocation, select a value.

Note: Entering an invalid option sets the memory to unlimited.
To add or remove Rulepacks, click Rulepacks.

To view the SCA command line options, click Preview.

Click Done.

The SCA scan options are changed.

Monitoring Builds

For C/C++ projects and solutions on Windows, SCA includes the HP Fortify Build Monitor, which is a graphical
user interface tool that automates analysis during builds.

To analyze C/C++ source code builds on Windows:

1.
2.

AN

Select Start > Program Files > HP Fortify Software > HP Fortify v3.80 > HP Fortify SCA - Build Monitor.
Click Monitor.

After the monitor initiates a green light icon displays.

Create a complete build of your project in your build environment.

Check that the build has finished successfully.

Return to the HP Fortify Build Monitor window and click Build Done.

SCA outputs the results to a subfolder, specify a name for the folder for the output. If the folder already exists,
SCA cleans the folder before starting the scan.

Click Scan.

FORTIFY Chapter 5: Translating C/C++ Code 27

SCA displays the results and saves an FPR file in the folder you specified.

Note: To view the results, open the FPR file in Audit Workbench or using the Secure Coding Package for
Microsoft Visual Studio.

Monitoring a Project Example

This example for Windows users analyzes the sample C++ code project named qwik-smtpd. It uses Microsoft
Visual Studio and the HP Fortify Build Monitor.

To analyze the gwik-smtpd project:

1. Using Microsoft Visual Studio, open and build the gwik-smtpd project located in the Tutorial/C/source
directory.

Select Start > Program Files > HP Fortify Software > HP Fortify v3.80 > HP Fortify SCA > Build Monitor.
Click Monitor.

Minimize the window.

AN A

In Microsoft Visual Studio, rebuild the project.

Note: Since nothing in the project changed, you must use the rebuild option.
6. Check that build has finished successfully.

7. Return to the HP Fortify Build Monitor window and click Build Done.

8. Specify the location of the build output.

9. Click Scan.

SCA saves an FPR file in the folder you specified.

Note: To view the results, open the FPR file in Audit Workbench or using the Secure Coding Package for
Microsoft Visual Studio.

About Command Line Builds in Visual Studio .NET

If you perform command line builds with Visual Studio .NET, you can easily integrate static analysis by simply
wrapping the build command line with an invocation of sourceanalyzer. For this to work, you must have the
HP Fortify Package for Microsoft Visual Studio for your version of Visual Studio installed.

Consider the following example
sourceanalyzer -b my buildid devenv MyProject.sln /REBUILD

This performs the translation phase on all files built by Visual Studio. Be sure to do a clean or a rebuild so that all
files are included.

About Command Line Builds in Visual Studio 6.0

If you perform command line builds with Visual Studio 6.0, you can integrate static analysis by wrapping the
build command line with an invocation of sourceanalyzer.

Consider the following example:
sourceanalyzer -b my buildid msdev MyProject.dsp /MAKE "MyProject DEBUG" /REBUILD

This performs the translation phase on all files built by the Visual Studio. Be sure to do a clean or a rebuild so
that all files are included, as described in your Visual Studio documentation.

FORTIFY Chapter 5: Translating C/C++ Code 28

This chapter covers the following topics:

e About Translating ABAP/4 Code

e About Scanning ABAP Code

¢ Overview of the Process

e About the Transport Request

¢ C(Create a Transaction Object

¢ Adding Fortify SCA to Your Favorites List (optional)
¢ Running the HP Fortify ABAP Extractor

About Translating ABAP/4 Code

Translating ABAP/4 code is similar to translating other operating language code, but requires additional steps
in order to extract the code from the SAP database and prepare it for scanning. This chapter assumes you have
SCA running and have a basic understanding of SCA, SAP, and ABAP/4.

About Scanning ABAP Code

When a PACKAGE is extracted from ABAP, the HP Fortify ABAP Extractor extracts everything from TDEVC
with a parentcl field that matches the package name. It then recursively extracts everything else from
TDEVC with a parentcl field equal to those already extracted from TDEVC. The field extracted from TDEVC
isdevclass.

The devclass values are treated as a set of program names and handled the same way as a program name
which you may optionally provide.

Programs are extracted from TRDIR by matching the name field against either the program name given by the
user in the selection screen or by comparing with the list of values extracted from TDEVC if a package was
provided. The rows from TRDIR are those for which the name field has the given program name and the
expression LIKE programname is used to extract rows.

This final list of names is used with READ REPORT to finally get code out of the SAP system. This method does
read classes and methods out as well as merely REPORTSs, for the record.

Each READ REPORT call produces a file in the temporary folder on the local system. This set of files is what
sourceanalyzer will translate and scan, producing an .fpr file which can be viewed with HP Fortify Audit
Workbench.

About INCLUDE Processing

As source code is downloaded, the HP Fortify ABAP Extractor checks for INCLUDE statements in the source.
When found, it downloads the include targets to the local machine for analysis as well.

Overview of the Process

There are two main steps required prior to translating your ABAP/4 code:

¢ Install a Transport Request on your SAP server.
In this step, you will install the HP Fortify Extractor program.

¢ Create a transaction object.

FDRT]FY‘ Chapter 6: Translating ABAP/4 29

In this step you will assign a transaction to the ABAP object created when you installed the Transport
Request.

In addition, you may want to add the transaction object to your Favorites list to make HP Fortify SCA easily
accessible.

Note: The following procedure is based on the use of the Windows SAP client-based interface. Screen shots
and interface locations may vary if you are using a different SAP client.

About the Transport Request

ABAP scanning is available as a premium component of SCA. If you purchased a license that includes this
capability, you will need to install the HP Fortify Transport Request on your SAP Server. Contact HP Fortify
Support for a copy of the HP Transport Request or information on adding this functionality to your licensed
copy of SCA.

Create a Transaction Object

You will need to create a transaction object in order to launch an SCA scan. Follow the steps below to create a
transaction object.

1. Press ESC until you reach the SAP Easy Access screen and type se93.

The Maintain Transaction screen appears.

= Maintain Transaction
V] ~JdH @@ CHRER anh4a2 EHE @ 6

Maintain Transaction
qo @ o e M @ Ep

Transaction Code

|6€{’ Display | |&# Change | |D Create

2. Type Z_AMOL_SCA in the Transaction Code box and click the Create button.
The Create Transaction box appears.

3. Inthe Transaction attributes section, type in a short description of the purpose of the transaction (for
example, Launch SCA) in the Short text box.

FDRT]FY‘ Chapter 6: Translating ABAP/4 30

4. In the Start object section, select the Program and selection screen (report transaction) radio button.

[Create Transaction x
Transaction code \Z_AMOL_SCA |
Transaction attributes
Short text \Launch SCA
Start object

{'Program and screen (dialog transaction)
(»)Program and selection screen (report transaction)

[IMethod of a class (00 transaction)

(I Transaction with variant (variant transaction)

{1 Transaction with parameters (parameter transaction)

5. Click the green checkmark button .

iFﬁRT[FY Chapter 6: Translating ABAP/4 31

The Create Report Transaction screen appears.
= Create Report Transaction el
LV B C@@ CHE ODod BAE @

Create Repoit Transaction
= PE G g 80

Transaction code Z_AMOL_SCA =
Package

Transaction text Launch SCA i

Program [

Selection screen 1000

Start with variant

Authorization Object Values

Classification
- -Tran;ac’tion_rja_ssiﬁ_c_at_ion
(s Professional User Transaction
“IEasy Web Transaction Service s

The object will be created in the original language English (EM) @ B |

6. Inthe Package text box, type sTvp

Note: If the Package box is not editable, leave it empty. On the following screen you should be able to enter
the package details.

Type the program name (for example, z_avor_sca) into the Program box.
In the GUI support section, select all three check boxes.

Click Save on the toolbar.

FDRT]FY‘ Chapter 6: Translating ABAP/4 32

The Create Object Directory Entry screen appears.

= Create Report Transaction W

@[dH e@@ CHKE nnan EF @B

Create Report Transaction
% PH a@S ASOH

Transaction code _[Z_HHDL_SCA] B
Package | 1
[E Create Object Directory Entry
Object [R3TR| TRAN| Z_AMOL_SCA]
Transaction text h ' - .
PFOQTEE‘H Aftributes
Selection screen
s Package |
with varian
——— || Person Responsible BCUSER
Authorization Dbjl . R
— || Original System NSP
Classification o .g- 3“83' [E_NJE .
——————————|| Original language nglis
Transaction clas el il al
|| Created On
(®) Professional —)
(O Easy Web Trg =
-
B a [Local Object |[/2 Lock Overview J P

Assign a packa

Note: If you weren’t able to enter package details on the previous screen, type stvp in the Package field.

10. Click the Save button.

Adding Fortify SCA to Your Favorites List (optional)

Adding Fortify SCA to your Favorites list is optional, but doing so may make it easier to access and launch
Fortify SCA scans. The following steps assume that you use the User menu in your day-to-day work. If your
work is done from a different menu, add the Favorites link to the menu that you use. Before you create the
Fortify SCA entry, the SAP server should be running and you should be in the SAP Easy Access area of your
web-based client.
1. From the SAP Easy Access menu, type sooo in the transaction box.

The SAP Menu appears.
2. Right-click the Favorites folder and select Insert transaction.

The Manual entry of a transaction box appears.

[= Manual entry of a transaction

Transaction Code = |

S IR=

iFDRTlFY Chapter 6: Translating ABAP/4 33

3. Type z_avmor_scain the Transaction code box.

Note: If you chose a different name when creating your transaction code, use that instead.

4. Click the green checkmark button .
The Launch SCA item should appear in the Favorites list.

= SAP Easy Access
& | - dH C@e@ CRR 8B4a8 @ @

SAP Easy Access
(& ™ & | &z&0ther menu B 2 v a | [Bcreaterole £H assignusers [EyDocumentation

- & Favorites _ _
- [#] Z_AMOL_SCA- Launch SCA
. Z100_HP_FORTIFY_SCA - Extract ABAP, la
. Z‘IUU_ZFSC_A- Launch SCA and Exl_ractor
~ 120 SAP menu
v (] Office
v (] Cross-Application Components
» [Accounting
v (] Information Systems
»

(] Tools

[¥] Mode added to favorites list |

F'C]RT“’:Y' Chapter 6: Translating ABAP/4
[

5. Click the link to launch SCA.

Package lo Scan |

Program to Scan

Hame of FPR {outpuf) file: C:\Usersibrookel i\ SapworkDir\ 26116761 IB!EB&EII
Background []

Temporary Folder C:\Users\brookel\SapWorkDir

Build 1D buf 1d-825346

Translation Arguments

Running the HP Fortify ABAP Extractor

1. Launch the program from the Favorites link, the transaction code, or by manually launching the
7 AMOL_SCA object.

= HP Fortify ABAP Extractor v

@ 4B e LHE DDho8 BRE @b

@

‘Objects
Software Component to
Package to
Program to
BSP Application to
Web Dynpro Comp. to

|| oo e

FPR File Path

Waorking Directory
Build-D

Translation Parameters
Scan P, :

ZIP File Name

[¥|Download
[¥|Build
[¥|Scan
[|Launch AWB
[|Create ZIP

| |Process in Background

lFDRTlFY' Chapter 6: Translating ABAP/4

2. Fill in the requested information:

Section

Data

Objects

Enter the name of the Software Component, Package,
Program, BSP or Web Dynpro Component you want to
scan.

Sourceanalyzer parameters

FPR File Path: Type the directory where you want to
store your FPR file. Include the name you want assigned
to the FPR file in the path name.

Working Directory: Type the directory where the
extracted source code should be copied.

Build-ID: Type the build ID for the scan.

Translations Parameters: List any optional
sourceanalyzer translation arguments.

Scan Parameters: List any optional sourceanalyzer scan
arguments.

ZIP File Name: Type a ZIP file name if you would like
your output provided in a compressed package.

Actions

Download: Check this box to instruct SCA to download
the source code extracted from your SAP database.

Build: Check this box to instruct SCA to <>
Scan: Check this box to request a scan.

Launch AWB: Check this box to launch Audit Workbench
and load the FPR.

Create ZIP: Check this box to request the output be
compressed.

Process in Background: Check this box to request that
processing occur in the background.

3. Click the Execute button.

FORTIFY

Chapter 6: Translating ABAP/4

36

This chapter covers the following topics:

e About the Command-Line Options

e About ActionScript Command Line Syntax
e ActionScript Command Line Examples

¢ About Handling Resolution Warnings

About the Command-Line Options

The following command-line options (with corresponding properties that can be used instead, for
convenience) are using when translating Flex files:

e -flex-sdk-root (com.fortify.sca.FlexSdkRoot) should point to the root of a valid Flex SDK. This folder
should contain a frameworks folder that contains a flex-config.xml file. It should also contain a bin folder
that contains an mxmlc executable.

You can set this property in your fortify-sca.properties file.

¢ -flex-libraries (com.fortify.sca.FlexLibraries) containsa : or ; separated list (: on most
platforms, ; on Windows) of library names that you want to “link” to. In most cases, this list includes
flex.swc, framework.swc, and playerglobal.swc (usually found in frameworks/libs/ under your Flex SDK
root).

You can set this property in your fortify-sca.properties file to use the same set of SWCs.
Note: You can specify SWC or SWF files as Flex libraries, but we do not currently support SWZ.

e _flex-source-roots (com.fortify.sca.FlexSourceRoots) containsa : or ; separated list of root
directories in which MXML sources can be found. Normally, these will contain a subfolder named com. For
instance, if a Flex source root is given that is pointing at foo/bar/src, then foo/bar/src/com/fortify/

manager/util/Foo.mxml will get transformed into an object named com. fortify.manager.util.Foo, (an
object named Foo in the package com. fortify.manager.util).

e -flex-sdk-root and -flex-source-roots are primarily for MXML translation, and are optional if you are
scanning pure ActionScript. -flex-1libraries is used for resolving all ActionScript

Note: MXML files are translated into ActionScript and then run through the ActionScript parser. The
ActionScript that is generated is intended to be simple to analyze; not rigorously correct like the Flex run-time
model. As a consequence of this, you may get parse errors with MXML files. For instance, the XML parsing
could fail, the translation to ActionScript could fail, and the parsing of the resulting ActionScript could also fail.
If you see any errors that do not have a clear connection to the original source code, please notify HP Fortify
Support.

About ActionScript Command Line Syntax

The basic command line syntax for ActionScript is:

sourceanalyzer -b <build id> -flex-libraries <listOfLibrariess
To pass files directly to Fortify SCA, enter:

sourceanalyzer -b <build id> -flex-libraries <listOfLibrariess
where:

<listOfLibraries>

FDRT]FY‘ Chapter 7: Translating Flex 37

is a semicolon-separated list (Windows) or a colon separated-list (non-Windows systems) of library names
that you want to “link” to.

ActionScript Command Line Examples

The following examples illustrate command-line structure for typical scenarios you may encounter.

Example 1

The following example is for a simple application that contains only one MXML file and a single SWF library
(MyLib.swf).

sourceanalyzer -b MyFlexApp -flex-libraries lib/MyLib.swf -flex-sdk-root /home/myself/

flex-sdk/ -flex-source-roots.my/app/FlexApp.mxml

This identifies the location of the libraries to include, and also identifies the Flex SDK and the Flex source root
locations. The single MXML file, located in /my/app/Flexapp.mxml,results in your MXML application’s being
translated as a single ActionScript class called FlexApp and located in the my.app package.

Example 2

The following example is for an application in which the source files are relative to the src directory. It uses a
single SWF library, MyLib. swf, and the Flex and framework libraries from the Flex SDK.

sourceanalyzer -b MyFlexProject -flex-sdk-root /home/myself/flex-sdk/ -flex-source-
roots src/ -flex-libraries lib/MyLib.swf src/**/*.mxml src/**/*.as

In this example, we locate the Flex SDK. SCA file specifiers are used to include the .as and mxm1l files under
the src folder. Itis not necessary to explicitly specify the . swc files found under the -f1ex-sdk-root, although
this example does so for the purposes of illustration. SCA will automatically locate all . swc files under the
specified Flex SDK root, and it assumes that these are libraries intended for use translating ActionScript or
mxml files.

Example 3

In this example, the Flex SDK root and Flex libraries are specified in a properties file since typing in the data is
time consuming and it tends to be constant. The application may be divided into two sections and stored in
folders: a main section folder and a modules folder. Each folder contains an src folder where the paths should
be begun. Wildcards are used in file specifiers to pick up all the .mxm1 and . as files in both of the src folders. An
MXML file in main/src/com/foo/util/Foo.mxml Will be translated as an ActionScript class named Foo in the
package com. foo.util, for example, with the source roots specified here:

sourceanalyzer -b MyFlexProject -flex-source-roots main/src:modules/src ./main/src/**/
* . mxml ./main/src/**/*.as ./modules/src/**/* mxml ./modules/src/**/*.as

About Handling Resolution Warnings

To see all warnings that were generated during your build, enter the following command before you start the
scan phase:

sourceanalyzer -b <build id> -show-build-warnings

About ActionScript Warnings
You may receive a message similar to:

The ActionScript front end was unable to resolve the following imports: a.b at y.as:2.
foo.bar at somewhere.as:5. a.b at foo.mxml:8.

This error occurs when SCA cannot find all of the libraries it needs. You may need to specify additional SWC or
SWEF Flex libraries (-flex-libraries option, or com.fortify.sca.FlexLibraries property) so that SCA can complete
the analysis.

FDRT]FY‘ Chapter 7: Translating Flex 38

This chapter covers the following topics:

e About Translating Objective-C Code
e About Objective-C on iPhone
¢ About Translating Google Android Code

About Translating Objective-C Code

This section describes how to translate Objective-C source code for iOS applications.

Prerequisites
¢ Xcode command-line tools must be installed in the path
¢ Projects must use the non-fragile Objective-C runtime (ABI version 2 or 3)

e Use Apple’s xcode-select command-line utility to set your Xcode path. SCA uses the systems’s global Xcode
configuration to find the Xcode toolchain and headers.

About Objective-C Command Line Syntax
The basic command line syntax for translating a single file is:

sourceanalyzer -b <build id> -clean

sourceanalyzer -b <build_id> xcodebuild [<compiler optionss>]
where:

<compiler optionss> are options passed to xcode.

Objective-C Command Line Example

The following simple examples illustrate usage patterns for the supported compilers. The following command
samples should be run from the directory where the project files are located.

To translate an Xcode Objective-C project, enter:

sourceanalyzer -b my buildid -clean

sourceanalyzer -b my buildid xcodebuild -sdk iphonesimulator

Note: If you have an Apple Developer Certificate, pass -sdk iphoneos instead of -sdk iphonesimulator.
To scan the application artifact files:

sourceanalyzer -b my buildid -scan -f result.fpr

Note: The source code will be compiled when running these commands.

Xcode Compiler Errors

If you receive Xcode compiler errors, this may be due to the inclusion of Clang options added after your
version of SCA was released. To eradicate the errors, type the following after xcodebuild:

ARCHS=1386
GCC_TREAT WARNINGS AS ERRORS=NO

where arcHS=1386 represents the architectures (ABIs, processor models) to which the binary is targeted.

FDRT]FY‘ Chapter 8: Translating Code for Mobile Platforms 39

About Objective-C on iPhone

When building code for the iPhone, you will need to pass an SDK option based on whether or not you have an
Apple Developer Certificate.

If you have an Apple Developer Certificate, pass -sdk iphoneos

If you do not have an Apple Developer Certificate, pass -sdk iphonesimulator

About Translating Google Android Code

SSR provides rules support for programs that run on the Google Android platform. These rules

¢ identify insecure data storage
e categorize applications by their security permissions and detect overprivileged uses

* send and receive intents, identify database, file system, web, private information and Android inter-
component sources

Translating Google Android code is similar to translating Java code. For instructions on translating Java code,
see Chapter 2, Translating Java Code on page 17.

Migration Issues

If you have migrated from a previous version of SCA and receive an error when running SC4, it may be due to
a deprecated property key in your fortify-sca.properties file. Check the fortify-sca.prorties file (located in the
install directory>/SCA/Core/config/ directory for any of the following, deprecated property keys:

com.fortify.sca.xcodebuild.CompilerPath
com. fortify.sca.xcodebuild.SupportedvVersion
com. fortify.sca.xcodebuild45.1llvmgcc

com. fortify.sca.xcodebuild43.CompilerPath
com.fortify.sca.clang.includes
com.fortify.sca.clang.CaptureWarnings
com.fortify.sca.llvmtonst.CaptureWarnings
com.fortify.sca.llvmtonst.FailOnError

com. fortify.sca.llvmtonst.command

com. fortify.sca.llvmtonst.options

com. fortify.sca.pretranslate.command

If found, remove the key from your properties file.

FDRT]FY‘ Chapter 8: Translating Code for Mobile Platforms 40

This chapter covers the following topics:

e About Command Line Syntax for Other Languages
¢ Configuration Considerations
¢ Translating COBOL Code

About Command Line Syntax for Other Languages

This topic describes the SCA command syntax for translating other languages.
The basic command line syntax for other languages is:

sourceanalyzer -b <build_id> <file_list>

Enter the following to select the sq1 type being translated on Windows platforms:
sourceanalyzer -b <example build> -sqgl-language TSQL <files>

or

sourceanalyzer -b <example build> -sgl-language PL/SQL <files>

SQL Note: By default, files with the extension sq1 are assumed to be T-SQL rather than PL/SQL on Windows
platforms. If you are using Windows and have PL/SQL files with the sq1 extension, you can configure SCA to
treat them as PL/SQL rather than explicitly specify it each time your run sourceanalyzer

To change the default behavior, set the com. fortify.sca.fileextensions.sql propertyin fortify-
sca.properties to “TSQL” or “PLSQL?

Enter the following to perform translation on ColdFusion source code:

sourceanalyzer -b <build -id> -source-base-dir <dir> <files|file specifierss>
where:

e <build id» specifies the build ID for the project

e <dir> specifies the root directory of the web application

e <files|file specifierss> specifies the CFML source code files

ColdFusion Note: SCA calculates the relative path to each CFML source file by using the

-source-base-dir directory as the starting point, then uses these relative paths when generating instance IDs.
If the entire application source tree is moved to a different directory, the instance IDs generated by a security
analysis should remain the same if you specify an appropriate value for

-source-base-dir

For a description of all the options you can use with the sourceanalyzer command, see Command Line
Interface on page 50.

File specifiers are shown in the following table:

Table 4: File Specifiers

File Specifier Description

<dirname> All files found under the named directory or any subdirectories

<dirname>/**/Example.js Any file named Example. js found under the named directory or
any subdirectories

FDRT]FY' Chapter 9: Translating Other Languages 41

Table 4: File Specifiers

File Specifier Description
<dirname>/*.js Any file with the extension . js found in the named directory
<dirnames/**/*.gs Any file with the extension . js found under the named directory

or any subdirectories

<dirnames/**/* All files found under the named directory or any subdirectories
(same as <dirname>)

Note: Windows and many Unix shells automatically try to expand arguments containing the '+' character, so
file-specifier expressions should be quoted. Also, on Windows, enter the backslash (\) instead of the forward
slash (/).

Configuration Considerations

This section provides information on configuring Python, configuring ColdFusion, configuring the SQL
extension, and configuring ASP/VSScript virtual root.

Configuring Python

SCA translates Python applications, and treats files with the extension py as Python source code. In order for
SCA to translate Python applications and prepare the application for a scan, SCA searches any import files for
the application. SCA does not respect the PYTHONPATH environment variable which the Python runtime
system uses to find imported files, so this information should be given directly to SCA using the -python-path
argument. In addition, some applications add additional import directories during runtime initialization.

To add paths for additional import directories, use the sourceanalyzer command line option:
-python-path pathname

Note: SCA translates Python applications using all import files located in the directory path defined by the -
python-path pathname option. Subsequently, translation may take a significant amount of time to complete.

Configuring ColdFusion

In order to treat undefined variables in a CFML page as tainted, uncomment the following line in
sca_install dir\Core\config\fortify-sca.properties:
#com. fortify.sca.CfmlUndefinedVariablesAreTainted=true

Doing so serves as a hint to the data flow analyzer to watch out for register-globals-style vulnerabilities.
However, enabling this property interferes with Dataflow findings in which a variable in an included page is
initialized to a tainted value in an earlier-occurring included page.

Configuring the SQL Extension

By default, files with the extension sq1 are assumed to be T-SQL rather than PL/SQL on Windows platforms. If
you are using Windows and have PL/SQL files with the sq1 extension, you should configure SCA to treat them
as PL/SQL. To change the default behavior, set the com. fortify.sca.fileextensions.sql property in
fortifyfsca.propertiestO"TSQL"Or"PLSQL?

Note: Fortify 360 v2.5 updated the PL/SQL parser to improve translation of PL/SQL source code. However, the
existence of two different parsers can make merging results from pre-v2.5 and post-v2.5 difficult.

To revert to the older version of the PL/SQL parser, add the following property to the fortify-sca.properties
file:

com. fortify.sca.UseOldPlsgl=true

FDRT]FY' Chapter 9: Translating Other Languages 42

Configuring ASP/VBScript Virtual Roots

SCA allows you to handle ASP virtual roots. For web servers that use virtual directories as aliases that map to
physical directories, SCA allows you to use alias.

For instance, you may have virtual directories named Include and Library which refer to the physical
directories c: \Webserver\CustomerOne\inc and C:\WebServer\CustomerTwo\Stuff, respectively.

As an example, the ASP/VBScript code for an application using virtual includes, as follows:
<!--#include virtual="Include/Taskl/foo.inc”-->

The above ASP code refers to the actual directory, as follows:
C:\Webserver\CustomerOne\inc\Taskl\foo.inc

The real directory replaces the virtual directory name 1nclude in that instance.

Accommodating Virtual Roots

In order to indicate to SCA what each virtual directory is an alias for, you must set a property of the form
com.fortify.sca.ASPVirtualRoots.name_of_ virtual_ directory as part of your commandline invocation of
SCA in the following manner:

sourceanalyzer -Dcom.fortify.sca.ASPVirtualRoots.name of virtual directory=<full path
to corresponding physical directorys>

Note: On Windows, if the physical path has spaces in it, you must include the property setting in double-
quotes:

sourceanalyzer "-Dcom.fortify.sca.ASPVirtualRoots.name of virtual directory=<full path
to corresponding *physical* directory>"

To expand upon the example in the previous section, the property value that you must pass along should be:
-Dcom. fortify.sca.ASPVirtualRoots.Include="C:\WebServer\CustomerOne\inc”

-Dcom. fortify.sca.ASPVirtualRoots.Library="C:\WebServer\CustomerTwo\Stuff”

Doing so causes the mapping of 1nclude to its directory and Library to its directory.

When SCA encounters the include directive:

<!-- #include virtual="Include/Taskl/foo.inc" -->

SCA will first check to see if your project contains a physical directory named Include. If there is no such
physical directory, SCA looks through its own run-time properties and sees that:

-Dcom. fortify.sca.ASPVirtualRoots.Include="C:\WebServer\CustomerOne\inc"
This tells SCA that virtual directory 1nciude is actually the directory:
C:\WebServer\CustomerOne\inc

This will cause SCA to look for the file:
C:\WebServer\CustomerOne\inc\Taskl\foo.inc

Alternately, if you choose to set this property in the fortify-sca.properties file, which is located in
<sca_install dir>\Core\config, you must escape the \ character, as well as any spaces that appear in the
path of the physical directory:

com. fortify.sca.ASPVirtualRoots.Library=c:\\WebServer\\CustomerTwo\\Stuff

com. fortify.sca.ASPVirtualRoots.Include=c:\\WebServer\\CustomerOne\\inc

FDRT]FY' Chapter 9: Translating Other Languages 43

Note: The previous version of the ASPVirtualRoot property is still valid, which you may use on the SCA
command line as follows:

-Dcom. fortify.sca.ASPVirtualRoots=C:\WebServer)\
CustomerTwo\Stuff;C:\WebServer\CustomerOne\inc

This prompts SCA to search through the listed directories in the order specified when it is resolving a virtual
include directive.

Example: Using Virtual Roots

You have a file as follows:

C:\files\foo\bar.asp

You can specify this file by using the following include:

<!-- #include virtual="/foo/bar.asp">

Then you should set the virtual root as:

-Dcom. fortify.sca.ASPVirtualRoots=C:\files\foo

This will strip the /foo from the front of the virtual root. If you do not specify foo in the AspvirtualrRoots
property, SCA will look in c:\files\bar.asp, and will fail.

The sequence for specifying virtual roots are as follows:

1. Remove the first part of the path in the source

2. Replace the first part of the path with the virtual root as specified on the command line.

Other Language Command Line Examples

This section includes examples of translating PL/SQL, T-SQL, PHP, Classic ASP written with VBScript,
JavaScript, VB Script Files.

Translating PL/SQL Example

The following example demonstrates syntax for translating two PL/SQL files:

sourceanalyzer -b MyProject x.pks y.pks

The following example demonstrates how to translate all PL/SQL files under the sources directory:

sourceanalyzer -b MyProject "sources/**/* _ pks"

Translating T-SQL Example

The following example demonstrates syntax for translating two T-SQL files:

sourceanalyzer -b MyProject x.sqgl y.sqgl

The following example demonstrates how to translate all T-SQL files under the sources directory:
sourceanalyzer -b MyProject "sources***.sqgl"

Note: This example assumes the com. fortify.sca.fileextensions.sqgl property in fortify-sca.properties
is set to “TSQL.”

Translating PHP Example
To translate a single file named mypuP . php, enter:

sourceanalyzer -b mybuild "MyPHP.php"

FDRT]FY‘ Chapter 9: Translating Other Languages 44

To translate a file where the source or the php. ini file entry includes a relative path name (starts with ./ or
../), you will need to set the PHP source root:

sourceanalyzer -php-source-root <path> -b mybuild "MyPHP.php"

where <path> should be the absolute or relative path to the project root directory. The relative path name will
expand from the php project root directory.

Translating Classic ASP written with VBScript Example
To translate a single file named mMyasp. asp, enter:

sourceanalyzer -b mybuild "MyASP.asp"

Translating JavaScript Example
To translate all JavaScript files under the scripts directory, enter:

sourceanalyzer -b mybuild "scripts/*.js"

Translating VB Script File Example
To translate a VB file named myapp . vb, enter:

sourceanalyzer -b mybuild "myApp.vb"

Translating COBOL Code

This section provides information on supported technologies, preparing COBOL source files for translation,
COBOL command line syntax, and auditing a COBOL scan.

Note: In order to use SCA to scan COBOL, you must have a specialized HP Fortify license specific for COBOL
scanning capabilities. Contact HP Fortify for more information about scanning COBOL and the necessary
license required.

Supported Technologies

SCA supports IBM Enterprise COBOL for IBM z/0S and is compatible with the following systems:
e CICS

e [MS

e DB/2 embedded SQL

¢ IBM WebSphere MQ

Preparing COBOL Source Files for Translation

SCA runs only on the supported systems listed in the HP Fortify System Requirements document, not on
mainframe computers. This means that before you can scan a COBOL program, you must copy the following
program components to the system running SCA:

¢ The COBOL source code
¢ All copybook files used by the COBOL source code
o All SQL INCLUDE files referenced by the COBOL source code

Preparing COBOL Source Code Files

If you are retrieving COBOL source files from a mainframe without COB or CBL file extensions (which is
usually the case for COBOL filenames), then you must use the following command line:

FDRT]FY’ Chapter 9: Translating Other Languages 45

-noextension-type COBOL <directory-file-path>

Specify the directory and folder with all COBOL files as the argument to SCA, and SCA will process all the files
in that directory and folder without any need for COBOL file extensions.

Preparing COBOL Copybook Files

SCA does not identify copybooks by extension. All copybook files should therefore retain the names used in
the COBOL source code COPY statements.

About COBOL Command Line Syntax

Free-format COBOL is the default translation and scanning mode for SCA. The basic syntax for translating a
single free-format COBOL source code file is:

sourceanalyzer -b <build-ids>
The basic syntax for scanning a translated free-format COBOL program is:

sourceanalyzer -b <build-id> -scan -f <FPR file name>

Working with Fixed-Format COBOL

SCA also supports fixed-format COBOL. When translating and scanning fixed-format COBOL, both the
translation and scanning command lines must include the -fixed-format command line option. For example,
the translation line syntax would look like:

sourceanalyzer -b <build-id> -fixed-format
And the scanning line syntax would look like:
sourceanalyzer -b <build-id> -scan -fixed-format -f <FPR file name>

If your COBOL code is IBM Enterprise COBOL, then it is most likely fixed format. If the COBOL translation
command appears to hang indefinitely, terminate the translation by typing Ctrl-C several times, and repeat the
translation command with the “-fixed-format” parameter.

Searching for COBOL Copybooks

Use the copydirs command line option to direct SCA to search a list of paths for copybooks and sgr. 1NcLUDE
files. For example, the command line syntax would look like the following:

sourceanalyzer -b coboltest -copydirs c:\cobol\copybooks

About Auditing COBOL Scans

After using the command line to scan the application, you can upload the resulting FPR file to HP Fortify Audit
Workbench or HP Fortify Software Security Center and audit the application’s issues.

SCA does not currently support custom rules for COBOL applications.

FDRT]FY' Chapter 9: Translating Other Languages 46

This chapter covers the following topics:

¢ Using the Log File to Debug Problems

e About the Translation Failed Message

e About]SP Translation Problems

¢ About ASPX Translation Problems

e About C/C++ Precompiled Header Files

¢ About Reporting Bugs and Requesting Enhancements

Using the Log File to Debug Problems

If you encounter warnings and problems when you run SCA, re-run SCA using the -debug option. This
generates a file named sca.1og in the following directory:

e On Windows: c:\Documents and Settings\<usernames\Local Settings\Application
Data\Fortify\scax.xx\log

¢ On other platforms: $HOME/ . fortify/scax.xx/log
where x.xx is the version of SCA you are using.

Email the sca. 109 file as a zip file to techsupport@fortify.com for further investigation.

About the Translation Failed Message

If your C/C++ application builds successfully but you see one or more “translation failed” messages when
building with SCA, edit the <install directorys>/Core/config/fortify-sca.properties file to change the
following line:

com. fortify.sca.cpfe.options= --remove unneeded entities --suppress_vtbl
to
com. fortify.sca.cpfe.options=-w --remove unneeded entities --suppress vtbl

Re-run the build to print the errors encountered by the translator. If the output indicates an incompatibility
between your compiler and the HP Fortify translator, send your output to Fortify Technical Support for
further investigation.

About JSP Translation Problems

SCA uses either the built-in or your specific application server's JSP compiler to translate]JSP files into Java
files for analysis.

If the JSP parser encounters problems when SCA is converting JSP files to Java files for analysis, you will see a
message similar to the following:

Failed to translate the following jsps into analysis model. Please see the log file for
any errors from the jsp parser and the user manual for hints on fixing those
<List of JSP file names>

This typically happens due to one or more of the following reasons:

¢ The web application is not laid out in a proper deployable WAR directory format
¢ You are missing some JAR files or classes required for the application

e Some tag libraries or their definitions (TLD) are missing from your application

FDRT]FY‘ Chapter 10: Troubleshooting and Support 47

To obtain more information about the problem, perform the following steps:

1. Open the SCA log file in an editor.

2. Search for the strings Jsp parser stdout: and Jsp parser stderr:.
These errors are generated by the JSP parser that was used. Resolve the errors and rerun SCA.

For more information about scanning J2EE applications, see Translating J2EE Applications on page 20.

About ASPX Translation Problems
SCA compiles ASPX files to DLLs for analysis as follows:

e Ifyou are using .NET 2.0 or later and Visual Studio 2005, using the Microsoft aspnet_compile compiler

¢ Ifyou are using .NET 1.1 and Visual Studio 2003, trying to fetch ASPX files one at a time from the website
The compilation step can fail if:

¢ You have access or authentication problems with accessing the web application

¢ You are missing some required DLLs

In either case, you will see a message similar to the following:

Failed to translate the following aspx files into analysis model. Please see the log
file for any errors from the aspx precompiler and the user manual for hints on fixing
those.

<List of ASPX file names>

If you are using the plug-in, enable plug-in debugging and examine the plug-in log file for any errors generated
by the ASPX precompiler.

If you are using the command line tool, fortify aspnet compiler, you should see the error messages on the
console.

If you still cannot determine the cause of the problem, try to access some of the failed ASPX files from your
browser and see what kind of errors display. If you see messages such as cannot locate assembly, ensure that
you have the missing DLLs and rerun SCA.

If you can access the failed ASPX files from the browser, but SCA still fails to scan it, contact HP Fortify
Technical Support for additional help.

For more information about scanning ASP.NET applications, see Translating ASP.NET 1.1 (Visual Studio
Version 2003) Projects on page 23.

About C/C++ Precompiled Header Files

Some C/C++ compilers support a feature termed “precompiled header files,” which can speed up compilation.
Some compilers' implementations of this feature have subtle side-effects. When the feature is enabled, the
compiler may accept erroneous source code without warnings or errors. This can result in a discrepancy
where SCA reports translation errors even when your compiler does not.

If you use the precompiled header feature of your compiler, make sure your source code compiles cleanly by
disabling precompiled headers and doing a full build.

About Reporting Bugs and Requesting Enhancements

Feedback is critical to the success of this product. To request enhancements or patches, or to report bugs, send
an email to Technical Support at:

techsupportefortify.com

FDRT]FY‘ Chapter 10: Troubleshooting and Support 48

Be sure to include the following information in the email body:

e Product: SCA
¢ Version Number: To determine the version number, run the following:

sourceanalyzer -version

¢ Platform: (such as PC)
e 0S: (such as Windows 2000)

When requesting enhancements, include a description of the feature enhancement.

When reporting bugs, provide enough details for the issue to be duplicated. The more descriptive you are, the
faster we can analyze and fix the issue. Also include the log files, or the relevant portions of them, from when
the issue occurred.

FDRT]FY' Chapter 10: Troubleshooting and Support 49

This appendix covers the command line options:

Output Options

Analysis Options

Python Option
ColdFusion Options
Java/]J2EE Options

.NET Options

Build Integration Options
Runtime Options

Other Options

Output Options

The following table describes the output options.

Table 5: Output Options

Output Option

Description

-append

Appends results to the file specified with - £. If this option is
not specified, SCA adds the new findings to the FPR file, and
labels the older result as previous findings. To use this
option, the output file format must be . fpr or . £vdl. For
information on the - format output option, see the description
in this table.

Note: When -append is passed to SCA and the output file
specified with the -f option contains the results of an earlier
scan, the resulting FPR contains the issues from the earlier
scan as well as issues from the current scan. The build
information and program data (lists of sources and sinks)
sections are also merged.

The engine data section, which includes rule pack information,
command line options, system properties, warnings and
errors, and other information about the execution of
sourceanalyzer (as opposed to information about the
program being analyzed), is not merged, in part because there
is no way to meaningfully merge this data from multiple scans.
Because engine data is not merged with -append, HP Fortify
does not certify results generated with -append.

In general, -append should only be used when it is not
possible to analyze an entire application at once.

-build-label <label>

The label of the project being scanned. The label is not used by
SCA but is included in the analysis results.

-build-project <projects>

The name of the project being scanned. The name is not used
by SCA but is included in the analysis results.

-build-version <version>

The version of the project being scanned. The version is not
used by SCA but is included in the analysis results.

-f <file>

The file to which results are written. If you do not specify an
output file, the output is written to the terminal.

FORTIFY’

Appendix A: Command Line Interface

50

Table 5: Output Options (Continued)

Output Option

Description

-format <formats>

Controls the output format. Valid options are fpr, £vdl, text,
and auto. The default is aut o, which selects the output format
based on the file extension.

Note: If you are using result certification, you must specify the
fpr format. See the Audit Workbench User’s Guide for
information on result certification.

Analysis Options

The following table describes the analysis options.

Table 6: Analysis Options

Analysis Option

Description

-disable-default-rule-
type <types>

Disables all rules of the specified type in the default
Rulepacks.Can be used multiple times to specify multiple rule
types.

Where the value of type is the XML tag minus the suffix “Rule.”
For example, use DataflowSource for DataflowSourceRule
elements. You can also specify specific sections of
characterization rules, such as Characterization:Control flow,
Characterization:Issue, and Characterization:Generic.

Type is case-insensitive.

-encoding

Specifies the encoding. SCA allows scanning a project that
contains different encoded source files. To work with a multi-
encoded project, you must specify the -encoding option at
the translation step, when SCA first reads the source code file.
This encoding is remembered in the build session, and is
propagated into the FVDL file.

-filter <file name>

Specifies a results filter file.

-findbugs

Enables FindBugs analysis for Java code. The Java class
directories must have been specified with the - java-
build-dir option, described in “Java/]J2EE Options” on
page 53.

-no-default-issue-rules

Disables rules in default Rulepacks that lead directly to issues.
Still loads rules that characterize the behavior of functions.
Note: This equivalent to disabling the following rule types:
DataflowSink, Semantic, Control flow, Structural, Configuration,
Content, Statistical, Internal, and Characterization:Issue.

-no-default-rules

Specifies not to load rules from the default Rulepacks. SCA
processes the Rulepacks for description elements and language
libraries, but no rules are processed.

-no-default-source-rules

Disables source rules in the default Rulepacks.
Note: Characterization source rules are not disabled.

-no-default-sink-rules

Disables sink rules in the default Rulepacks.
Note: Characterization sink rules are not disabled.

-disable-gource-
rendering

Source files are not included in the FPR file.

FORTIFY’

Appendix A: Command Line Interface

Table 6: Analysis Options (Continued)

Analysis Option

Description

-quick

Scans the project in Quick Scan Mode, using the fortify-
sca-quickscan.properties file. By default, this scan
searches for high-confidence, high-severity issues. For more
information about Quick Scan Mode, see the Audit Workbench
User’s Guide.

-rules
[<file>|<directorys>]

Specifies a custom Rulepack or directory. Can be used multiple
times to specify multiple Rulepack files. If you specify a
directory, all of the files in the directory with the .bin and
.xml extensions are included

-scan

Causes SCA to perform analysis for the specified build ID.

Python Option

The following table describes the ColdFusion option.

Table 7: Python Options

Python Option

Description

-python-path <path name>

Specifies the path for additional import directories. SCA does
not respect the PYTHONPATH environment variable that the
Python runtime system uses to find imported files. Use the
-python-path argument to specify additional import
directories.

ColdFusion Options

The following table describes the ColdFusion option.

Table 8: ColdFusion Options

ColdFusion Option

Description

-source-base-dir

The web application’s root directory.

-gource-archive

The application’s source archive repository. You must include
the -scan and -f options to use this option.

FORTIFY’

Appendix A: Command Line Interface

52

Java/J2EE Options

The following table describes the Java/]2EE options.

Table 9: Java/J2EE Options

Java/J2EE Options

Description

-appserver

Specifies the application server for processing JSP files:
weblogic or websphere.

-appserver-home

Specifies the application server’s home.

For Weblogic, this is the path to the directory containing the
server/lib directory.

For WebSphere, this is the path to the directory containing the
JspBatchCompiler script.

-appserver-version

Specifies the version of the application server.
For Weblogic, valid values are 7, 8, 9, and 10.
For WebSphere, the valid value is 6.

-cp <classpaths,
-classpath <classpath>

Specifies the classpath to use for analyzing Java source code.
The format is same as javac: a colon or semicolon-separated list
of paths. You can use SCA file specifiers.

Note: If you do not specify the classpath with this option, the
CLASSPATH environment variable is used.

-extdirs <dirs>

Similar to the javac extdirs option, accepts a colon or
semicolon-separated list of directories. Any jar files found in
these directories are included implicitly on the classpath.

-java-build-dir

Specifies one or more directories to which Java sources have
been compiled. Must be specified for FindBugs results, as
described in “Analysis Options” on page 51.

-source <version>

Indicates which version of the JDK the Java code is written for.
Valid values for versionare1.3,1.4,1.5,1.6 and 1.7.
The defaultis 1. 4.

-sourcepath Specifies the location of source files which will not be included
in the scan but will be used for name resolution. The
sourcepath is like classpath, except it uses source files rather
than class files for resolution.

.NET Options

The following table describes the .NET options.

Table 10: .NET Options

.NET Options

Description

-libdirs <dirs>

Accepts a colon or semicolon-separated list of directories
where system DLLs are located.

FORTIFY’

Appendix A: Command Line Interface

53

Table 10: .NET Options (Continued)

.NET Options Description
-dotnet-sources Specifies where to look for source files for additional
<directory name> information. This option is automatically passed from the SCA

plug-ins and Audit Workbench but when you are running SCA
manually, you must provide it yourself.

This option causes SCA to attempt to find any .NET classes,
enums, or interfaces that are not explicitly declared in the
compiled project.

-vsversion <versions Specifies Visual Studio version. Valid values for version are
7 .1 for Visual Studio Version 2003, 8 . 0 for Visual Studio
Version 2005, 9.0 for Visual Studio 2008, 10.0 for Visual Studio
2010 and 11.0 for Visual Studio 2012. The default value is 7. 1.

Build Integration Options
The following table describes the build integration options.

Table 11: Build Integration Options

Build Integration Options Description

-b <build ids Specifies the build ID. The build ID is used to track which files
are compiled and combined to be part of a build and later to
scan those files.

-bin <binarys> Used with - scan to specify a subset of source files to scan.
Only the source files that were linked in the named binary at
build time are included in the scan. Can be used multiple times
to specify the inclusion of multiple binaries in the scan.

-exclude <file patterns> Removes files from the list of files to translate.

For example: sourceanalyzer —-cp "**/*.jar"

nxk /xn _exclude "**/Test.java"

Note: The -exclude option works when input files are
specified on the command line; it does not work with compiler
integration.

-nc When specified before a compiler command line, SCA
processes the source file but does not run the compiler.

Directives

The following directives can be used to list information about translation steps that have been taken. Only one
directive can be used at a time and cannot be used in conjunction with normal translation or analysis steps.

Table 12: Directives

Directives Description

-clean Deletes all SCA intermediate files and build records.
When a build ID is also specified, only files and build
records relating to that build ID are deleted.

-show-binaries Displays all objects that were created but not used in
the production of any other binaries. If fully integrated
into the build, it lists all of the binaries produced.

FORTIFY Appendix A: Command Line Interface 54

Table 12: Directives (Continued)

Directives

Description

-gshow-build-ids

Displays a list of all known build IDs.
Note: This option may erase build IDs generated by
previous versions of SCA.

-show-build-tree

Displays all files used to create binary and all files
used to create those files in a tree layout. If the -bin
binary option is not present, the tree is displayed for
each binary.

Note: This option can generate an extensive amount
of information.

-gshow-files

Lists the files in the specified build ID. When the -bin
option is present, displays only the source files that
went into the binary.

-show-build-warnings

Use with -b <build_ids> to show all errors and
warnings from the translation phase on the console.
Note: These errors and warnings display in the results
certification panel of Audit Workbench.

Runtime Options

The following table describes the runtime options.

Table 13: Runtime Options

Runtime Options

Description

-64

Runs SCA under the 64-bit JRE. If no 64-bit JRE is available, SCA
fails.

-logfile <file name>

Specifies the log file that is produced by SCA.

-quiet

Disables the command line progress bar.

-verbose

Sends verbose status messages to the console.

-Xmx <size>

Specifies the maximum amount of memory used by SCA. By
default, it uses up to 600 MB of memory (-Xmx600M), which
can be insufficient for large code bases. When specifying this
option, ensure that you do not allocate more memory than is
physically available, because this degrades performance. As a
guideline, assuming no other memory intensive processes are
running, do not allocate more than 2/3 of the available memory.

FORTIFY’

Appendix A: Command Line Interface

55

Other Options

The following table describes other options.

Table 14: Other Options

Other Options Description

@<filename> Reads command line options from the specified file.
-encoding Specifies the source file encoding type. This option is the same
<encoding name> as the javac encoding option.

-h, -?, -help Prints this summary of command line options.

-version Displays the version number.

-debug Enables debug mode which is useful during troubleshooting.
-build-migration-map Runs the InstancelD mapper at the end of a scan.

<old_fpr file>

Specifying Files

File specifiers are expressions that allow you to easily pass a long list of files to SCA using wildcard characters.
SCA recognizes two types of wildcard characters: '+' matches part of a filename, and '**' recursively matches
directories. You can specify one or more files, one or more file specifiers, or a combination of files and file
specifiers.

<files> | <file specifierss>

File specifiers can take the following forms:

Table 15: File Specifiers

File Specifier Description

<dirname> All files found under the named directory or any subdirectories

<dirnames>/**/ Any file named Example. java found under the named

Example.java directory or any subdirectories

<dirnames>/*.java Any file with the extension . java found in the named directory

<dirnames/**/* java Any file with the extension . java found under the named
directory or any subdirectories

<dirnames>/**/* All files found under the named directory or any subdirectories
(same as dirname)

Note: Windows and many Unix shells automatically try to expand arguments containing the '*' character, so file-
specifier expressions should be quoted. Also, on Windows, the backslash character (\) may be used as the
directory separator instead of the forward slash (/).

File specifiers do not apply to C or C++ languages.

FORTIFY Appendix A: Command Line Interface 56

This appendix covers the following topics:

e About Parallel Analysis Mode
¢ Hardware Requirements
¢ Configuring Parallel Analysis Mode

¢ Running in Parallel Analysis Mode

About Parallel Analysis Mode

Parallel processing allows you to reduce scan times by harnessing the multiple cores, memory, and processing
power in your machine. Depending on the nature of your project and your hardware, parallel processing can
reduce scan time as much as 90 percent.

While parallel processing can be enabled for all scans, scans that complete in less than 2 hours may not warrant
the higher processing power requirements. For this reason, parallel processing is not the default mode of
operation. You must enable parallel processing on your system and initiate it on the command line.

Hardware Requirements

Please refer to the HP Fortify Software Security Center System Requirements document for the latest hardware
and software requirements for running SCA in parallel.

Configuring Parallel Analysis Mode

After installing SCA and completing the post-installation steps, you will need to add a couple properties to
your SCA configuration file to enable parallel processing.

Add the following properties to your fortify-sca.properties file, located in the
<SCA Installation Directorys>\core\config directory.

Table 16: Parallel Analysis Mode Properties

Property Description

com.fortify.sca.RmiWorkerMaxHeap | Setsthe heap size for the workers.

(default: heap size of master JVM) The amount of memory required varies from project to project,
but you don’t have to allocate as much memory for the
workers as you do for the master JVM.

You may need to experiment with this property if you
experience low memory warnings, crashes, or don’t achieve a
significant speed increase.

The RmiWorkerMaxHeap property accepts values in kilobytes

(K), megabytes (M), or Gigabytes (G). For example, to set the
property to 500 kilobytes:

-Dcom. fortify.sca.Rmi
WorkerMaxHeap = 500K

com. fortify.sca.ThreadCount You will only need to add this parameter if you need to lower
(default: If unchanged, SCA will use all the number of threads used because of a resource constraint. If
available threads.) you experience slow-downs or problems with your scan,

reducing the number of threads used may solve the problem.

FORTIFY Appendix B: Parallel Analysis Mode 57

Running in Parallel Analysis Mode

To run sourceanalyzer in parallel analysis mode, add the following parameter to your command string:

-j <# worker processes>

The ideal number of worker processes is n-2, where n represents the number of processors in your
machine. For example, if your machine has 8 processors, the ideal number of worker processes would be 6.
There is a single master process that coordinates tasks and the distribution of data to the data workers.
Each Java process uses the same amount of memory (unless you overrode it using the

com. fortify.sca.RmiWorkerMaxHeapMB in the fortify-sca.properties file). You may need to
balance the -Xmx and - j options to insure you don’t allocate more memory than is physically available.

To figure out the maximum number of workers for your installation:

Total Physical Memory

Physical Memory Per Java Process x Number of processes

Example of translating a single file named MyServlet.java:

sourceanalyzer -b MyServlet -cp lib/j2ee.jar
MyServlet.java -j 6

The minimum value for -7 is 2, but 3 or higher is recommended. A value of 3 is usually faster than when
not running in parallel, but 4 or more should provide you with the best overall speed increases.

FORTIFY Appendix B: Parallel Analysis Mode 58

This appendix covers the following topics:

¢ Using the Ant Sourceanalyzer Task
¢ Antproperties

¢ Sourceanalyzer Task Options

About the sourceanalyzer Ant Task

The sourceanalyzer Ant task provides a convenient way to integrate SCA into your Ant build. As discussed in
Translating Java Code, translation of Java source files that are part of an Ant build is most easily accomplished
using the SCA Compiler Adapter, which automatically captures input to javac task invocations. The
sourceanalyzer task provides a convenient and flexible way to accomplish other translation tasks and to run
analysis.

This section describes how to use the sourceanalyzer Ant task and provides an example of a sample build file
with a self-contained analysis target.rs.

Using the Ant Sourceanalyzer Task

As with the SCA Compiler Adapter, using the sourceanalyzer task requires sourceanalyzer.jar tobeon
Ant's classpath, and the sourceanalyzer executable to be on the PATH.

The first step to using the sourceanalyzer taskis to include a typedef in the build.xml file as follows:
<typedef name="sourceanalyzer" classname="com.fortify.dev.ant.SourceanalyzerTask"/>

Note: Only Ant 1.6 and higher supports top-level typedef of the sourceanalyzer task. For Ant 1.5 and lower,
include the typedef in the target where the sourceanalyzer task is used.

Once this typedef is included, targets can be defined that invoke the sourceanalyzer task to perform
translation and analysis operations exactly as if running sourceanalyzer from the command line. The
sourceanalyzer task syntax is similar to that of the command line interface, but Ant fileset and path
primitives can be leveraged.

The following is an example of a snippet from an Antbuild.xml file which provides a target users can call to
generate SCA results for the project. This snippet assumes that the targets clean and compile and the path
jsp.classpath are defined elsewhere in the file. It also uses verbose and log to create a separate SCA log file
for the build.

<available classname="com.fortify.dev.ant.SourceanalyzerTask"
property="fortify.present"/>

<property name="sourceanalyzer.buildid" value="mybuild"/>

<!-- For debugging in a separate HP Fortify SCA log file -->

<property name="fortify.debug" value="false" />

<property name="fortify.verbose" value="false" />

<mkdir dir="${code.build}/log" />

<mkdir dir="${code.build}/audit" />

<tstamp/>

<property="com.fortify.sca.PPSSilent” value="true” />

<target name="fortify" if="fortify.present"s>

<typedef name="sourceanalyzer"
classname="com.fortify.dev.ant.SourceanalyzerTask"/>
<!-- call clean to ensure that all source files are recompiled -->

FDRTlFY' Appendix C: Using the sourceanalyzer Ant Task 59

</target>

<antcall target="clean"/>

<!-- call the compile target using the SCA Compiler Adapter to -->
<!-- translate all source files-->

<antcall target="compile">

<!-- Log SCA in separate file -->

<param name="com.fortify.sca.Debug" value="${fortify.debug}" />

<param name="com.fortify.sca.Verbose" value="${fortify.verbose}" />

<param name="com.fortify.sca.LogFile"
value="${code.build}/log/${sourceanalyzer.buildid}-${DSTAMP} -
${TsTAMP}.log" />

<param name="build.compiler"
value="com.fortify.dev.ant.SCACompiler" />

</antcalls>
<!-- capture all configuration files in WEB-INF directory -->
<echos>sourceanalyzer ${web-inf}</echo>
<sourceanalyzer buildid="${sourceanalyzer.buildid}">
<fileset dir="${web-inf}">
<include name="**/* properties"/>
<include name="**/* xml"/>
</fileset>
</sourceanalyzer>
<!-- translate all jsp files-->
<echos>sourceanalyzer ${basedir} jsp</echo>
<sourceanalyzer buildid="${sourceanalyzer.buildid}">
<fileset dir="${basedir}">
<include name="**/*_jsp"/>
</fileset>
<classpath refid="jsp.classpath"/>
</sourceanalyzers>
<!-- run analysis -->
<echo>sourceanalyzer scan</echo>
<sourceanalyzer buildid="${sourceanalyzer.buildid}"
scan="true"
resultsfile="issues.fpr"

/ >

Ant properties

Any Ant property that begins with com. fortify is relayed to the sourceanalyzer task via -D. For example,
setting the com. fortify.sca.ProjectRoot property results in -
Dcom. fortify.sca.ProjectRoot=<value> being passed to the sourceanalyzer task. This is also used for

the SCACompiler adapter. These properties can be set either in the build file, using the <property> task for

example, or on the Ant command line using the -D<property=<value> syntax.

When using the SCACompiler adapter via the build. compiler setting, the sourceanalyzer.build Ant

property is equivalent to the bui1dID attribute of the sourceanalyzer task, and the
sourceanalyzer.maxHeap is equivalent to maxHeap. You can use either the command line or your build script
to set these properties.

FORTIFY’

Appendix C: Using the sourceanalyzer Ant Task

60

Sourceanalyzer Task Options

The following table contains the command line options for the sourceanalyzer task. Path values use colon (:)
or semi-colon (;) delimited lists of file names.

Table 17: Sourceanalyzer Task Command Line Options

Attribute Command Line Option Description
append -append Appends results to the file specified with
the - £ option. If this option is not
specified, SCA overwrites the file.
Note: To use this option, the output file
format must be . fpr or . £vdl. For
information on the - format output
option, see the description in this table.
appserver -appserver Specifies the application server: Valid
<appservers options are weblogic or websphere
appserverHome -apperserver-home Specifies the application server's home
<directory> directory.
For Weblogic, this is the path to the
directory containing server/1ib
directory.
For WebSphere, this is the path to the
directory containing the bin/
JspBatchCompiler script.
appserverVersion -apperserver-version | Specifies the version of the application
<version numbers server.
For Weblogic: versions 7, 8, 9, and 10
For WebSphere: version 6
bootclasspath -bootclasspath Specifies the JDK bootclasspath.
<classpath>
buildID -b <build ID> Specifies the build ID. The build ID is
used to track which files are compiled
and linked as part of a build and later to
scan those files.
buildLabel -build-label Specifies the label of the project being
<build label> scanned. The label is not used by SCA but
is included in the analysis results.
buildProject -build-project Specifies the name of the project being
<project_name> scanned. The name is not used by SCA
but is included in the analysis results.
buildVersion -build-version The version of the project being scanned.
<version> The version is not used by SCA but is
included in the analysis results.
classpath -cp <classpath> Specifies the classpath to be used for Java
source code. Format is same as javac
(colon or semicolon-separated list of
paths).
clean -clean This option resets the build ID. The
default value is false.

FORTIFY’

Appendix C: Using the sourceanalyzer Ant Task

61

Table 17: Sourceanalyzer Task Command Line Options (Continued)

<format type>

Attribute Command Line Option Description
debug -debug This option enables the debug mode,
which is useful during troubleshooting.
disableAnalyzers -disable-analyzer This option takes a colon-delimited list of
<list_of_analyzers> analyzers so that you can disable multiple
analyzers at once if necessary.
enableAnalyzers -enable-analyzer This option takes a colon-delimited list of
<list_of_analyzers> analyzers so that you can enable multiple
analyzers at once if necessary.
encoding -encoding Specifies the source file encoding type.
<encoding type> This option is the same as the javac
encoding option.
extdirs -extdirs Similar to the javac extdirs option,
<list_of_ dirs> accepts a colon or semicolon separated
list of directories. Any jar files found in
these directories are included implicitly
on the classpath.
filter -filter <file namex> Specifies the filter file.
findbugs -findbugs Setting this to true enables FindBugs
analysis. The default value is false.
format -format Controls the output format. Valid options

are fpr, £vdl, text, and auto. The
default is aut o, which selects the output
format based on the file extension.
Note: If you are using results
certification, you must specify the fpr
format. See the Audit Workbench User’s
Guide for information on results
certification.

javaBuildDir

-java-build-dir
<directorys

Specifies one or more directors to which
Java sources have been compiled. Must
be specified for the £indbugs option, as
described above.

-source <value>

Indicates which version of the DK the
Java code is written for. Valid values for
this optionare 1.3,1.4,1.5,1.6 and
1.7.The defaultis 1.4.

Note: The source and JDK options are
the same. If both options are specified,
the option that is specified last will take
precedence.

jdkBootclasspath

-jdk-bootclasspath
<classpaths>

Specifies the JDK bootclasspath.

logfile

-logfile <file names>

Specifies the log file that is produced by
SCA.

FORTIFY’

Appendix C: Using the sourceanalyzer Ant Task

62

Table 17: Sourceanalyzer Task Command Line Options (Continued)

Attribute

Command Line Option

Description

maxHeap

-Xmx <size>

Specifies the maximum amount of
memory used by SCA. By default, it uses
up to 600 MB of memory (600M), which
can be insufficient for large code bases.

When specifying this option, ensure that
you do not allocate more memory than is
physically available, because this will
degrade performance. As a guideline,
assuming no other memory intensive
processes are running, do not allocate
more than 2/3 of the available memory.

noDefaultRules

-no-default-rules

Setting this option specifies that SCA
should not apply default rules when
scanning.

quick

-quick-scan

Launches an SCA quick scan instead of a
regular scan. Set value to t rue to launch
a quick scan.

resultsfile

-f
<absolute path file
name>

The file to which the results are written.

rules

-rules
<delimited rules 1lis
t>

The rules option takes a list of rules files,
delimited by the path separator. This is a
semi-colon (;) on Windows, and a colon
(:) on other platforms. For each element
in this list, SCA is passed the -rules
<file>command.

scan

-scan

Setting this option determines whether
SCA should perform analysis on the
provided build ID. The default value is
false.

source

-source <value>

Indicates which version of the DK the
Java code is written for. Valid values for
this optionare 1.3,1.4,1.5,and 1.6.
The defaultis 1. 4.

Note: The source and JDK options are
the same. If both options are specified,
the option that is specified last will take
precedence.

sourcepath

-sourcepath
<directorys

Specifies the location of source files
which will not be included in the scan but
will be used for resolution.

use64bit

-64

Runs SCA under the 64-bit JRE. If no 64-
bit JRE is available, SCA fails.

verbose

-verbose

Setting this option sends verbose status
messages to the console.

The bootclasspath, classpath, extdirs, and options may also be specified as nested elements, as with
the Ant javac task. Source files can be specified via nested <fileset> elements.

FDRTlFY' Appendix C: Using the sourceanalyzer Ant Task 63

The following table includes sourceanalyzer elements.

Table 18: Sourceanalyzer Task Nested Elements

Element Ant Type Description

fileset Fileset Specifies the files to pass to SCA.

classpath Path Specifies the classpath to be used for Java source code.

bootclasspath Path Specifies the JDK bootclasspath.

extdirs Path Similar to the javac extdirs option. Any jar files found in
these directories are included implicitly on the classpath.

sourcepath Path Specifies the location of source files which will not be
included in the scan but will be used for resolution.

FORTIFY’

Appendix C: Using the sourceanalyzer Ant Task

64

This chapter describes the following advanced options:

¢ About Filter Files
¢ Using Properties to Control Runtime Options

About Filter Files

You can create a text file for filtering out particular vulnerability instances, rules, and vulnerability categories
when you run the sourceanalyzer command. The file is specified by the -filter analysis option.

Note: HP Fortify Software recommends that you only use this feature if you are an advanced user, and that you
do not use this feature during standard audits, because auditors should be able to see and evaluate all issues
found by SCA.

Afilter file is a flat text file that can be created with any text editor. The file functions as a blacklist, such that only
the filter items you do not want are specified one per line. The following filter types can be entered on a line:

e (Category
e Instance ID

e RuleID

The filters are applied at different times in the analysis process, according to the type of filter. Category and rule
ID filters are applied during the initialization phase before any scans have taken place, whereas an instance 1D
filter is applied after the analysis phase.

Filter File Creation Example

As an example, the following output resulted from a scan of the EightBall. java, located in the /Samples/
basic/eightball directory in your HP Fortify installation directory.

The following command is executed to produce the analysis results:

>sourceanalyzer -b eightball Eightball.java

>sourceanalyzer -b eightball -scan

The following result set displays, showing six detected issues.
[F7A138CDE5235351F6A4405BA4AD7C53 : low : Unchecked Return Value : semantic]

EightBall.java(12) : Reader.read()

[EFE997D3683DC384056FA40F6C7BDOE8 : medium : Path Manipulation : dataflow]
EightBall.java(12) : ->new FileReader (0)
EightBall.java(6) : <=> (filename)

EightBall.java(4) : ->EightBall.main(0)

[60AC727CCEEDEO041DE984E7CE6836177 : medium : Unreleased Resource : Streams : con

trolflow]

EightBall.java(12) : start -> loaded : new FileReader(...)

FDRTlFY' Appendix D: Advanced Options 65

EightBall.java(1l2) : loaded -> loaded : <inline expression> refers to an
allocated resource

EightBall.java(12) : java.io.IOException thrown
EightBall.java(12) : loaded -> loaded : throw
EightBall.java(12) : loaded -> loaded : <inline expression> no longer refers

to an allocated resource
EightBall.java(12) : loaded -> end of scope : end scope : Resource leaked

java.io.IOException thrown

EightBall.java(12) : start -> loaded : new FileReader(...)

EightBall.java(l2) : loaded -> loaded : <inline expression> refers to an
allocated resource

EightBall.java(1l4) : loaded -> loaded : <inline expression> no longer refers
to an allocated resource

EightBall.java(14) : loaded -> end of scope : end scope : Resource leaked

[BBOF74FFAOFF75C9921D0093A0665BEB : low : J2EE Bad Practices : Leftover Debug Code
structural]

EightBall.java(4)

[FFOD787110C7AD2F3ACFASBEBG6ES51C3 : low : Poor Logging Practice : Use of a System
Output Stream : structural]

EightBall.java(10)

[FFOD787110C7AD2F3ACFASBEB6ES51C4 : low : Poor Logging Practice : Use of a Syste
m Output Stream : structural]
EightBall.java(13)
The sample filter file, test_filter.txt does the following:
¢ Removes all results related to the Poor Logging Practice category
¢ Removes the Unreleased Resource based on its instance ID
¢ Removes any data flow issues that were generated from a specific rule ID
The test filter.txt file used in this example contains the following text:

#This is a category that will be filtered from scan output
Poor Logging Practice

#This is an instance ID of a specific issue to be filtered from scan #output
60AC727CCEEDEO41DE984E7CE6836177

#This is a specific Rule ID that leads to the reporting of a specific #issue in
#the scan output: in this case the data flow sink for a Path Manipulation #issue.
823FE039-A7FE-4AAD-B976-9EC53FFE4A59

You can create a file to test the filtered output by copying the above text into a file.

FORTIFY Appendix D: Advanced Options 66

The following command is executed using the -filter option to specify the test filter.txt:

[C:\Program Files\Fortify Software\HP Fortify vX.XX\Fortify SCA X.XX\Samples\basic\
eightball] >sourceanalyzer -b eightball -scan -filter test filter.txt

The following result set displays:

[F7A138CDE5235351F6A4405BA4AD7C53 : low : Unchecked Return Value : semantic]
EightBall.java(12) : Reader.read()

[BBOF74FFAOFF75C9921D0093A0665BEB : low : J2EE Bad Practices : Leftover Debug Code
structurall

EightBall.java(4)

FDRTIFY' Appendix D: Advanced Options

67

Using Properties to Control Runtime Options

You can edit properties to define runtime options for SCA, including analysis, output, and performance tuning
options. These properties can be set in four different places:

¢ Global configuration file (fortify-sca.properties): used to define global settings.

e User configuration file -- (fortify-sca.properties (Windows) or .fortify-sca.properties (non-
Windows): used to define user-specified settings.

¢ Quick Scan configuration file (fortify-sca-quickscan.properties) : used to define settings used
when SCA is run in Quick Scan mode.

¢ Command line: you can define property settings on the command line
-D<property name>=<property value>

The fortify-sca.properties global settings file and the fortify-sca-quickscan.properties file are
located in the <install directorys>/Core/config directory. The user-specific properties files -- fortify-
sca.properties on Windows installations and . fortify-sca.properties on non-Windows installations --
are located in either your Windows user directory or your Unix home directory.

You can edit all properties files directly.

Specifying the Order of Properties

SCA processes properties in a specific order, using this order to override any previously set properties with the
values that you specify. You should keep this processing order in mind when making changes to the properties
files.

Property definitions are processed in the following order:

¢ Properties specified on the command line have the highest precedence and can be specified during any
scan.

¢ Properties specified in the Quick Scan configuration file (fortify-sca-quickscan.properties) are
processed second, but only when the -quick option is used to operate in Quick Scan mode. If Quick Scan is
not invoked, this file is ignored.

¢ Properties specified in the Global configuration file (fortify-sca.properties) are processed last. You
should edit this file if you want to change the property values on a more permanent basis for all scans.

SCA also relies on some properties that have internally defined default values.

Table 19: HP Fortify Properties lists properties that can be defined. The default values are listed. If you want to
use Quick Scan Mode, or you want to tune your application, you can make the changes as described in Table 20:
on page 72.

Table 19: HP Fortify Properties

Property Name

Default Value Description

com. fortify.sca.AbortedScanOverwritesOutput

false By default, if a scan is interrupted, the partial results are written to a
different output file: <output>.partial. fpr instead of
<output>. fpr. If this property is set to true, the interrupted
result are written to the normal outfile (<output>. £pr), which
overwrites any full-scan results that may be present in that file.

FDRTlFY' Appendix D: Advanced Options 68

Table 19: HP Fortify Properties (Continued)

Property Name

Default Value Description

com.fortify.sca.Appserver

(none) Specifies the application server for processing JSP files: weblogic
or websphere

com.fortify.sca.Appserver.Home

(none) Specifies the application server’s home.
For Weblogic, this is the path to the directory containing server/
1ib directory.
For WebSphere, this is the path to the directory containing the
bin/JspBatchCompiler script.

com.fortify.sca.Appserver.Version

(none) Specifies the version of the application server.
For Weblogic, valid values are 7, 8, 9, and 10.
For WebSphere, the valid value is 6.

com.fortify.sca.fileextensions.*

(none) Controls how SCA handles files with given extensions. See
fortify-sca.properties for examples.

com.fortify.sca.FPRDisableSrcHtml

(none) If true, disables source code rendering into the FPR file.

com. fortify.sca.NoDefaultRules

(none) If true, rules from the default Rulepacks are not loaded. SCA
processes the Rulepacks for description elements and language
libraries, but no rules are processed.

com. fortify.sca.NoDefaultIssueRules

(none) If true, disables rules in default Rulepacks that lead directly to issues.
Still loads rules that characterize the behavior of functions.
Note: This equivalent to disabling the following rule types:
DataflowSink, Semantic, Controlflow, Structural, Configuration,
Content, Statistical, Internal, and Characterization:Issue.

com.fortify.sca.DisableDefaultRuleTypes

(none)

Disables the specified type of rule in the default Rulepacks; where
type is the XML tag minus the suffix “Rule.” For example, use
DataflowSource for DataflowSourceRule elements. You can also
specify specific sections of characterization rules, such as
Characterization:Controlflow, Characterization:Issue, and
Characterization:Generic. Type is case-insensitive.

Use a colon delimited list to specify multiple types of rules.

com.fortify.sca.NoDefaultSinkRules

(none)

If true, disables sink rules in the default Rulepacks.
Note: Characterization sink rules are not disabled.

FORTIFY’

Appendix D: Advanced Options

69

Table 19: HP Fortify Properties (Conti

nued)

Property Name

Default Value

Description

com. fortify.sca.NoDefaultSourceRules

(none)

If true, disables source rules in the default Rulepacks.
Note: Characterization source rules are not disabled.

com.fortify.sca.Projec

tRoot

(platform dependent)

Directory used by SCA to store intermediate files generated during
scans.

com. fortify.sca.ASPVir

tualRoots.<virtual path>=<physical path>

false

If true, enables support for virtual roots. This property associates
virtual path names with physical path names.

com.fortify.sca.Defaul

tFileTypes

java,jsp,sql,pks,pkh,pkb,xml,p
roperties,config,dllexe

Comma-separated list of file extensions that are picked up by default
by SCA.

com. fortify.sca.compil

ers.*

(none)

Can be used to inform SCA about specially named compilers. See
fortify-sca.properties for examples.

com. fortify.sca.CfmlUn

definedVariablesAreTainted

false

If true, treats undefined variables in a CFML page as tainted. Doing so
serves as a hint to the data flow analyzer to watch out for register-
globals-style vulnerabilities. However, enabling this property
interferes with data flow findings in which a variable in an included
page is initialized to a tainted value in an earlier-occurring included

page.

com. fortify.sca.FVDLDi

sableProgramData

false

If true, causes the ProgramData section to be excluded from the
analysis results (FVDL output).

com. fortify.sca.FVDLDi

sableSnippets

false

If true, code snippets are not included in the analysis results (FVDL
output).

com. fortify.sca.LogFil

${com.fortify.sca.Pro
jectRoot}/log/sca.log

The default location for the SCA log file.

com. fortify.sca.LogMax

Size

(none)

When this property is set, it enables log rotation for the SCA log. The
value is the number bytes that can be written to the log file before it

is rotated. Must be used with com. fortify.sca.LogMaxFiles.

com. fortify.sca.LogMax

Files

FORTIFY’

Appendix D: Advanced Options

70

Table 19: HP Fortify Properties (Continued)

Property Name

Default Value

Description

(none)

The number of log files to include in the log file rotation set. When all
files are filled, the first file in the rotation is overwritten. The value
must be at least 1. Must be used with

com. fortify.sca.LogMaxSize.

com. fortify.

sca.Debug

false

Produces a debug log file. This log file is for Technical Support
purposes.

com. fortify.

sca.PPSSil

ent

false

Prompts the user with the number of lines the scan requires to
analyze the source code. Set to true to suppress the prompt and
automatically deduct the lines.

Note: If the scan requires more lines than are available, the scan fails
with an error indicating how many additional lines are required.

com. fortify.

sca.Unicod

eInputFile

(none)

When set to true, this property indicates that the input file is UTF-8
based and begins with a byte-order mark (BOM). Typically, you
should only set this property if you see a lexical error at Line 1,
Column 1, indicating that the BOM is present.

com. fortify.

rules.Skip

RulePacks

(none)

Semicolon-delimited list of Rulepacks to exclude from the default set.
This property controls which Rulepacks are used by SCA by default.
All Rulepacks installed in <install directorys/Core/
config/rules are used by default unless they are on this list.

com. fortify.

sca.limite

rs.MaxChainDepth

5

Controls the maximum call depth through which the data flow
analyzer tracks tainted data. Increasing this value increases the
coverage of data flow analysis, and results in longer analysis times.
This property can be changed if you are using Quick Scan Mode: see
the following table for the suggested value to use. Note: In this case,
call depth refers to the maximum call depth on a data flow path
between a taint source and sink, rather than call depth from the
program entry point, such asmain ().

com. fortify.

sca.limite

rs.MaxFieldDepth

4

Controls the maximum granularity of taint tracking through data
structure member fields. This value is the number of nested fields
through which taint will be tracked before the entire structure is
considered tainted. Increasing this value improves the accuracy of
analysis by reducing false positives, and normally increases analysis
time.

com. fortify.

sca.limite

rs.MaxPaths

5

Controls the maximum number of paths to report for a single data
flow vulnerability. Changing this value does not change the results
that are found, only the number of data flow paths displayed for an
individual result.

FORTIFY’

Appendix D: Advanced Options

71

Table 19: HP Fortify Properties (Continued)

Property Name

Default Value Description

com.fortify.sca.limiters.MaxIndirectResolutionsForCall

128 Controls the maximum number of virtual functions that are followed
at a given call site.

com.fortify.sca.jspparserusesclasspath

false Allows the user to specify the classpath to the Weblogic parser. This
is for Weblogic 9 and 10 only.

The following table describes the properties that can be used to tune default scanning performance. They have
different defaults for Quick Scan mode, which can be adjusted by editing the fortify-sca-
quickscan.properties file. If you want to use the recommended tuning parameters, you do not need to edit
this file; however, you may find that you want to experiment with other settings to fine-tune your specific
application.

Remember that properties in this file are processed only if you specify the -quick option on the command line
when invoking your scan.

Table 20: Performance Tuning Properties

Property Name

Values Description

com.fortify.sca.FilterSet

Default value is not set. When set to targeted, this property runs rules only for the
targeted filter set. Running only a subset of the defined rules

Quick Scan value: Critical allows the SCA scan to complete more quickly. This causes SCA to

Exposure. run only those rules that can cause issues identified in the named

filter set, as defined by the default project template for your
application. For more information about project templates, see
the Audit Workbench User’s Guide.

com.fortify.sca.FPRDisableSrcHtml

Default value: False. When set to true, this property prevents the generation of
marked-up source files. If you plan to upload FPRs that are

Quick Scan value: True. generated as a result of a quick scan, you must set this property
to false.

com.fortify.sca.limiters.ConstraintPredicateSize

Default value: 50000. Skips calculations defined as very complex in the buffer analyzer
to improve scanning time.
Quick Scan value: 10000.

com.fortify.sca.limiters.BufferConfidenceInconclusiveOnTimeout

Default value: true. Skips calculations defined as very complex in the buffer analyzer
to improve scanning time.
Quick Scan value: false.

com. fortify.sca.limiters.MaxChainDepth

FDRTlFY' Appendix D: Advanced Options 72

Table 20: Performance Tuning Properties (Continued)

Property Name

Values

Description

Default value: 5.

Quick Scan value: 4.

Controls the maximum call depth through which the data flow
analyzer tracks tainted data. Increasing this value increases the
coverage of data flow analysis, and results in longer analysis
times.

Note: In this case, call depth refers to the maximum call depth on
a data flow path between a taint source and sink, rather than call
depth from the program entry point, such asmain ().

com.fortify.sca.limiters

.MaxTaintDefForVar

Default value: 1000.

Quick Scan value: 500.

This property sets the complexity limit for data flow precision
backoff. Data flow incrementally decreases precision of analysis
for functions that exceed this complexity metric for a given preci-
sion level

com.fortify.sca.limiters

.MaxTaintDefForVarAbort

Default value: 4000.

Quick Scan value: 1000.

This property sets a hard limit for function complexity. If com-
plexity of a function exceeds this limit at the lowest precision
level, the analyzer will not analyze that function.

com.fortify.sca.DisableGlobals

Default value: false.

Quick Scan value: false.

This property prevents the tracking of tainted data through global
variables to allow faster scanning.

com.fortify.sca.CtrlflowSkipJdSPs

Default value: false.

Quick Scan value: false.

This property skips control flow analysis of JSPs in your project.

com. fortify.sca.NullPtrMaxFunctionTime

Default value: 300000.

Quick Scan value: 30000.

This property sets a time limit, in milliseconds, for Null Pointer
analysis for a single function. The default is five minutes. Setting
it to a shorter limit decreases overall scanning time.

com. fortify.sca.CtrlflowMaxFunctionTime

Default value: 600000.

Quick Scan value: 30000.

This property sets a time limit, in milliseconds, for control flow
analysis for a single function. The default is 10 minutes.

com. fortify.sca.TrackPaths

By default, this property is not
set.

Quick Scan value: NoJSP.

This property disables path tracking for control flow analysis.
Path tracking provides more detailed reporting for issues, but
requires more scanning time. You can disable this for JSP only by
setting it to NoJSP, or for all functions by setting it to None.

com. fortify.sca.JdkVersion

Default value: 1.4

This property specifies the JDK version.

FORTIFY’

Appendix D: Advanced Options

73

This appendix covers:

¢ Installation

¢ Setting Windows Environment Variables for Touchless Integration of SCA
¢ Adding Custom Tasks to your MSBuild Project

¢ Adding Custom Tasks to Your Project

About MSBuild Integration

SCA provides the ability to translate your .NET source code as part of your MSBuild build process. With SCA’s
MSBuild integration, you can translate files on machines where the Visual Studio IDE has not been installed.
MSBuild integration is compatible with version 2.0, 3.5, and 4.X of the MSBuild executable, allowing for the
translation of the following project/source code types:

e (C/C++ Console Applications (Visual Studio 2010 and above only)
e (C/C++ Libraries (Visual Studio 2010 and above only)

e Visual C# and Visual Basic Websites

¢ Visual C# and Visual Basic Libraries

e Visual C# and Visual Basic Web Applications

¢ Visual C# and Visual Basic Console Applications

This section describes how to launch an SCA analysis as part of your MSBuild project.

Installation

There are no installation steps required unless the machine you run MSBuild on does not include a copy of
Microsoft Visual Studio. If your build machine doesn’t include a copy of Microsoft Visual Studio, you will need to
add com. fortify.sca.IldasmPath=<Path to ildasm.exe> to your

<SCA Installation Directorys\core\config\fortify-sca.properties file

Setting Windows Environment Variables for Touchless Integration of
SCA

When integrating SCA into your MSBuild process, there are a number of Windows environment variables that
you can set. If you don’t set these variables, SCA will assume a default set of variables and use those. Once
you've set the appropriate Windows environment variables, successive builds will use the same set until you
make a change to the environment variables. The environment variables that can be set are listed in Table 21.

Table 21: Windows Environment Variables

Environment Variable Definition Default

FORTIFY MSBUILD BUILDID Used to set the SCA build ID. The build ID passed on
the command line.

FORTIFY MSBUILD DEBUG Used to put the logger and HP Fortify Static Code False
Analyzer in debug mode.

FORTIFY MSBUILD MEM Used to set the memory used to invoke HP Fortify 600 MB
Static Code Analyzer (i.e., -Xmx1200M)

FDRTlFY' Appendix E: MSBuild Integration 74

Table 21: Windows Environment Variables (Continued)

Environment Variable Definition Default

FORTIFY MSBUILD LOG Used to set the location for the log. ${win32.LocalAppd
ata}/Fortify/
MSBuildPlugin

FORTIFY_ MSBUILD_SCALOG Used to set the location for the SCA log. Use an

absolute path when changing.

FORTIFY MSBUILD LOGALL Use to set the plug in so that it will log every False
message passed to it. This will create a very large
amount of information.

Touchless integration requires the FortifyMSBuildTouchless.dll located in the \Core\1ib directory. It must be
run from a Visual Studio command prompt.

The following is an example of the command used to run the build and launch an SCA analysis using the default
environment variables, or those you have previously set:

sourceanalyzer -b buildid msbuild <solution file> <msbuild options>
Alternatively, you can call MSBuild to launch a build and SCA analysis:

Msbuild <solution file> /logger:"C:\Program Files\Fortify Software\HP Fortify
vX.XX\Core\lib\FortifyMSBuildTouchless.dll" <msbuild options>

Adding Custom Tasks to your MSBuild Project

Rather than using the Touchless Integration method, you can add a number of custom tasks to your MSBuild
project in order to invoke SCA. These tasks must be added to an MSBuild project, not a solution. A solution file is
not a valid MSBuild script. Solutions are parsed by MSBuild and a corresponding project file is created.

Table 22 lists the custom tasks you can add to your MSBuild project:

Table 22: Custom Tasks

Custom Task Required Parameters Optional Parameters
Fortify.TranslateTask | BuildID - the build ID for the References - list of dlls to be passed via the
translation libdirs command
BinariesFolder - the directory where JVMSettings - memory settings to pass to
the files to be translated reside SCA
VSVersion - the version of the .NET LogFile - location for the SCA log file
dlls being used. Debug - sets task and SCA to debug mode
Fortify.ScanTask BuildID - the build ID for the scan JVMSettings - memory settings to pass to
Output - the name of the FPR file to be SCA
generated LogFile - location for the SCA log file

Debug - sets task and SCA to debug mode

Fortify.CleanTask BuildID - the build ID for the scan Debug - sets task and SCA to debug mode

FORTIFY Appendix E: MSBuild Integration 75

Table 22: Custom Tasks (Continued)

Custom Task

Required Parameters

Optional Parameters

Fortify.SSCTask

AuthToken - should be defined or use
username and password

Project - project name

ProjectVersion - project version. If
undefined, a ProjectID and
ProjectVersionID must be defined

FPRFile - name of the file to upload to
Software Security Center

SSCURL - the URL for the SSC

Debug - specifies task and SCA should be
invoked with debug

Username - necessary if AuthToken isn’t
defined

Password - necessary if AuthToken isn’t
defined

ProjectID - used with ProjectVersionID if
Project and ProjectVersion aren’t used

ProjectVersionID - used with ProjectID if
Project and ProjectVersion aren’t used

Proxy - necessary if a proxy is required

Fortify.CloudScanTask

BuildID - the build ID for the
translation

SSCUpload - set this boolean to true to
upload your output to SSC.

CloudURL - the CloudURL
or
SSCUrl - the SSC URL

Debug - set this boolean to true for debug
mode

The following parameters are only used
when SSCUpload is set to true:

SSCToken - the SSC token
Project - the project to upload to

VersionName - the version you want to
upload to

The following parameter are only used
when SSCUpload is set to false:

FPRName - the name for the FPR file

Adding Custom Tasks to Your Project

You can add any of the following tasks to your project script:

Fortify. TranslateTask
Fortify.ScanTask
Fortify.CleanTask
Fortify.SSCTask
Fortify.CloudScanTask

Adding Fortify.TranslateTask
To add Fortify.TranslateTask to your project script:

1. Create a task to identify and locate FortifyMsBuildTasks.dll.

<UsingTask TaskName="Fortify.TranslateTask” AssemblyFile="<Install
Directory>\Core\lib\FortifyMSBuildTasks.d1l1l” />

2. Create a new target or add the following custom target to an existing target to invoke the custom task:

<Target Name="FortifyBuild” AfterTargets="AfterBuild” Outputs="dummy.out”>

<TranslateTask BinariesFolder="$ (OutDir)”

VSVersion="<Visual Studio Version>"

BuildID="TempTask”

JVMSettings="-Xmx1000M”

FORTIFY’

Appendix E: MSBuild Integration 76

LogFile="trans_task.log”
Debug="true” />
</Target>

The FortifyBuild target will be invoked after the AfterBuild target is run. The AfterBuild target is one of several
default targets defined in the MSBuild target file. If one of the required parameters isn’t defined, the MSBuild will
fail

Note: Ifadding a new target when running MSBuild 2.0 or 3.5, you will need to remove the string
AfterTargets="AfterBuild” and replace FortifyBuild with AfterBuild

Adding Fortify.ScanTask
The following code adds Fortify.ScanTask to the MSBuild project. New content is in bold text.

<UsingTask TaskName="Fortify.TranslateTask" AssemblyFile="<Install
Directory>\Core\lib\FortifyMSBuildTasks.dll" />

<UsingTask TaskName="Fortify.ScanTask" AssemblyFile="<Install Directory>\Core
\lib\FortifyMSBuildTasks.dll"/>

<Target Name="FortifyBuild" AfterTargets="AfterBuild" Outputs="dummy.out">
<TranslateTask BinariesFolder="$ (OutDir)"

VSVersion="<Visual Studio Versions>"
BuildID="TempTask"

JVMSettings="-Xmx1000M"

LogFile="trans task.log"

Debug="true" />

<ScanTask BuildID="TempTask"

JVMSettings="-Xmx1000M"
LogFile="scan task.log"
Debug="true"
Output="Scan.fpr" />

</Target>

Adding Fortify.CleanTask
The following example adds the Fortify.CleanTask to the MSBuild project.

<UsingTask TaskName="Fortify.CleanTask" AssemblyFile="<Install
Directory>\Core\lib\FortifyMSBuildTasks.dll" />
<Target Name="FortifyBuild" AfterTargets="AfterBuild" Outputs="dummy.out">

<CleanTask BuildID="TempTask" />

</Target>

Adding Fortify.SSCTask
The following example adds the Fortify.SSCTask to the MSBuild project. New content is in bold:

<UsingTask TaskName="Fortify.TranslateTask" AssemblyFile="<Install
Directory>\Core\lib\FortifyMSBuildTasks.dll" /> <UsingTask
TaskName="Fortify.ScanTask" AssemblyFile="<Install
Directory>\Core\lib\FortifyMSBuildTasks.dll" />

FORTIFY Appendix E: MSBuild Integration 77

<UsingTask TaskName="Fortify.SSCTask" AssemblyFile=<Install
Directory>\Core\lib\FortifyMSBuildTasks.dll" />

<Target Name="FortifyBuild" AfterTargets="AfterBuild" Outputs="dummy.out">
<TranslateTask BinariesFolder="$ (OutDir)"

VSVersion="<Visual Studio Version>"
BuildID="TempTask"
JVMSettings="-Xmx1000M"
LogFile="trans_ task.log"
Debug="true" />

<ScanTask BuildID="TempTask"
JVMSettings="-Xmx1000M"
LogFile="scan task.log"
Debug="true"
Output="Scan.fpr" />

<SSCTask Username="admin"

Password="admin"

Project="Test Project"

ProjectVersion="Test Version 1"

FPRFile="SSC.fpr"

SSCURL="http://localhost:8180/SSC7"/>
</Target>

Adding Fortify.CloudScanTask

If you are using CloudScan to process your scans, you can send the translated output to your cloud-based
resource. The following example adds the Fortify.CloudScanTask to the MSBuild project:

<UsingTask TaskName="Fortify.CloudScanTask” AssemblyFile="<Install
Directory>\Core\lib\FortifyMSBuildTasks.d1l1l” />

<Target Name="FortifyBuild" AfterTargets="AfterBuild" Outputs="dummy.out">
<CloudScanTask BuildID="TempTask"
SSCUpload="false"
FPRName="Scan. fpr"
CloudURL="http://localhost:8080/cloud-ctrl" />

</Target>

FDRTIFY' Appendix E: MSBuild Integration

78

This appendix covers the following topics:
¢ About the Maven Plugin

¢ Installing the Maven Plugin

¢ Updating the Maven Plugin

¢ Using the Maven Plugin

¢ Excluding Files from the Scan

¢ Uninstalling the Maven Plugin

e Additional Documentation

About the Maven Plugin

SCA includes a Maven plugin which provides a means for you to add SCA clean, translation, scan, and .fpr upload
capabilities to your Maven project builds. You can use the plugin directly or integrate its functionality into your
build process.

The Maven plugin is located:
<HP Fortify Install Directorys\Samples\advanced\maven-plugin

Inside the directory, you will find the files listed in Table 23.

Table 23: Contents of maven-plugin directory

File Description

pom.xml Project object model file.

README. TXT The README text provides installation and usage instructions.

samples (directory) Includes two sample project directories: EightBall and MyEnterpriseApp.
settings.xml XML file that establishes the namespace to be used as it relates to Maven settings.
src (directory) Location of source code, assemblies, etc.

The plugin is compatible with Maven 2.0.9 to 3.0.5, inclusive. Maven 3.X.X is recommended.

Installing the Maven Plugin

When installing the Maven plugin, we assume that the path to the SCA bin folder is in your PATH environment
variable.

Note: If you are using SCA version 3.60, 3,70, or 3.80, you will need to edit the EOL format of the plugin source
files before installing the plugin. See Editing the Plugin Source Files before installing the plugin. If you have a
previous version of the Maven Plugin installed, see

To install the Maven plugin:

1. Open a terminal or command prompt window and navigate to the maven-plugin directory.
<HP Fortify Install Directory>\Samples\advanced\maven-plugin
2. Atthe prompt, type:

mvn clean package install

FORTIFY Appendix F: Maven Integration 79

Updating the Maven Plugin
If you have a previous version of the Maven Plugin installed, you can upgrade to the latest version.
To update the Maven Plugin on your system:

1. Open a terminal or command prompt window and navigate to the maven-plugin directory.
<HP Fortify Install Directorys\Samples\advanced\maven-plugin
2. Atthe prompt, type:

mvn install

Editing the Plugin Source Files

If you are using SCA version 3.60, 3.70, or 3.80, you will need to edit the end-of-line (EOL) format of the plugin
source files before installing the plugin. If you are using a version of SCA post 3.80, you do not need to edit the
source files. The following instructions are based on the OS you are using.

To edit the files on a Windows system:

1. Open a Command Prompt window and Navigate to:
Samples\advanced\maven-plugin\src\main\java\com\fortify\ps\maven\plugin\sca
2. Open the following files in a text editor:
e (CleanMojo.java
e DeleteGeneratedSourcesMojo.java
e StringHelper.java
e Util.java
3. Change the EOL format for each of these files to CR+LF (DOS/Windows).

For example, if using Notepad++ as your text editor, click Edit-->EOL Conversion --> Windows Format. If you
make these changes after installing the plugin, you will need to uninstall it and then reinstall it after the
changes have been made.

To edit the files on a Linux or Unix system:

1. Open a terminal window and navigate to the following directory:
<HP_Fortify Install_Directorys>/Samples/advanced/maven-plugin/src/main/java/com/
fortify/ps/maven/plugin/sca

2. Run the following commands:
sudo dos2unix -o *.java

sudo mac2unix -o *.java

Note: If you make these changes after installing the plugin, you will need to uninstall it and then reinstall it
after the changes have been made.

To edit the files on a Macintosh system:

1. Navigate to:

<HP_Fortify Install_Directorys>/Samples/advanced/maven-plugin/src/main/java/com/
fortify/ps/maven/plugin/sca

2. In atext editor of your choice, change the line endings of all Java source files to LF (0S X / Unix format). If
Xcode is available on your system, you can open the source files in Xcode and change the line endings to LE.

Note: If you make these changes after installing the plugin, you will need to uninstall it and then reinstall it
after the changes have been made.

FORTIFY Appendix F: Maven Integration 80

Testing the Plugin
After installing the maven plugin, use one of the included sample files to ensure your installation is working
properly.
To test the Maven plugin using the EightBall sample file:
1. Add the directory containing the sourceanalyzer executable to the path environment variable.
For example:
export set PATH=$PATH:/path/to/f360/bin
or
set PATH=%PATHS%;path\to\f360\bin
2. Type sourceanalyzer -hto testthe PATH setting.
It should return sourceanalyzer help.
3. Navigate to the Eightball directory:
<HP Fortify Install Directory>\Samples\advanced\maven-plugin\samples\EightBall

4. Openthe pom.xml filein a text editor and locate the <version> tag. This is the version of the Maven
plugin.

Do not mistake the <modelversion> tag for the <version> tag.

Using the Maven Plugin

You can run the package locally or integrate it as part of your build process. During the translation
phase, the SCA Maven Plugin will search your jar file from the local repository and try to resolve
classes in your application.

Note: In the following steps, you are provide three versions of the SCA commands. The Short Goal Name
version of each command can only be used if you are using the latest version of the Maven plugin and you have
placed a copy of the setting.xml file in the local repository.

To manually scan your code using the Maven Plugin:

1. Install the target application in the local repository:
mvn install

2. Clean out the previous build using one of the following commands:

Complete mvn com.fortify.ps.maven.plugin:sca-maven-plugin:<vers:clean
Without Version ID mvn com.fortify.ps.maven.plugin:sca-maven-plugin:clean
Short Goal Name mvn sca:clean

3. Translate the code:

Complete mvn com.fortify.ps.maven.plugin:sca-maven-
plugin:<vers>:translate

Without Version ID mvn com.fortify.ps.maven.plugin:sca-maven-plugin:translate

Short Goal Name mvn sca:translate

FORTIFY Appendix F: Maven Integration 81

4. Scan the code::

Complete mvn com.fortify.ps.maven.plugin:sca-maven-plugin:<vers>:scan
Without Version ID mvn com.fortify.ps.maven.plugin:sca-maven-plugin:scan
Short Goal Name mvn sca:scan

where <vers is the version of the Maven Plugin you're using.
Note: If you don’t specify the version, Maven will call the latest version of the sca-maven-plugin in the local
repository.
To scan your files as part of your build system
1. Install the target application in the local repository:
mvn install
2. Clean out the previous build:
mvn com.fortify.ps.maven.plugin:sca-maven-plugin:<versions>:clean

3. Translate the code using one of the following options:

Translation Code Options

sourceanalyzer -b <build id> [sca build options] mvn

sourceanalyzer -b <build id> [sca build options] mvn com.fortify.ps.maven.plugin:sca-
maven-plugin:<vers:translate

sourceanalyzer -b <build id> [sca build options] mvn com.fortify.ps.maven.plugin:sca-
maven-plugin:translate

sourceanalyzer -b <build id> [sca build options] mvn sca:translate

Note: To use this version of the command, you must have placed a copy of the setting.xml file in the local
repository.

4. Run the scan:

sourceanalyzer -b <build id> [sca scan options] -scan -f result.fpr

Excluding Files from the Scan

If you don’t want to include all of the files in your project or solution, you can direct SCA to exclude selected files
from your scan:
1. Create an exclusion file in a text editor.
2. Add the following line to the file you just created:
com.fortify.sca.exclude="fileA;fileB;fileC"

Note: File names must be separated with a semicolon. Wild cards are supported; asingle asterisk (*) can be
used to match part of a file name while two asterisks (**) can be used to recursively match directories. For
more information on wild cards, see

3. Add the following code to the translation step:

-Dfortify.sca.properties.file=my.exclusions

FORTIFY Appendix F: Maven Integration 82

For example, for the sample EightBall project, you would issue the following command to translate the
source code:

mvn com.fortify.ps.maven.plugin:sca-maven-plugin:4.00:translate
-Dfortify.sca.source.version=1.6 -Dfortify.sca.properties.file=my.properties

Uninstalling the Maven Plugin

To uninstall the Maven Plugin, manually delete sca-maven-plugin from the local repository.

Additional Documentation
After the plugin has been properly installed, a new directory will be included in the following location:

Samples\advanced\maven-plugin\target\site

Open the file index.html to start reading the documentation. There are sections on the available options, basic
usage guide, uploading scans to SSC Server, and FAQs.

FORTIFY Appendix F: Maven Integration 83

This appendix covers the Fortify Scan Wizard.

About the Fortify Scan Wizard

HP Fortify Scan Wizard is a utility that enables you to quickly and easily prepare and scan project code using HP
Fortify Static Code Analyzer. The Scan Wizard enables you to run your scans locally, or, if you are using HP
Fortify CloudScan, in the cloud.

The wizard steps you through a number of screens, making it simple to initiate a scan. If you use HP Fortify
Software Security Center, you can direct Scan Wizard to send the resultant FPR file directly to Software Security
Center.

Note: Because of the nature of the script generated by Scan Wizard, a script generated on a Windows machine
cannot be run on a non-Windows machine; nor can a Windows machine process a script generated on a non-
Windows machine.

To use Scan Wizard, you will need:

e The location and access to the build directory or directories of the project(s) to be scanned
¢ The version of the Java JDK used in development, if you are scanning Java code

e The location of custom rule files (optional)

If you plan to scan your code in the cloud using HP Fortify CloudScan, you will also need:
o The URL of the cloud server

If you plan to send your scan results to Software Security Center, you will also need:

* Your Software Security Center credentials
e The server's URL
¢ An upload token

Note: If you don't have an upload token, the Scan Wizard will allow you to generate a multi-use token. You must
have Software Security Center credentials in order to generate a multi-use token.

If you don't have Software Security Center credentials, you will also need:

e The project name

¢ The project version name

Launching HP Fortify Scan Wizard

1. Download and uncompress the Scan Wizard package for your OS.

2. Launch the ScanWizard. cmd (Windows) or ScanWizard (Linux or Macintosh) file.
The file is located in the HP-Fortify-X.XX-Scan-Wizard/bin directory.

3. Follow the onscreen prompts.

FDRTlFY' Appendix G: HP Fortify Scan Wizard 84

This appendix covers the following topics:
e About the Sample Files
e Basic Samples

e Advanced Samples

About the Sample Files

Your HP Fortify software installation includes a number of sample files that you can use when testing or learning
to use SCA. The sample files are located in the following directory:

<HP_Fortify Install_Directory>/Samples

Inside the Samples directory are two sub-directories: basic and advanced. Each code sample includes a
README . txt file that provides instructions on scanning the code in SCA and viewing the output in Audit
Workbench.

The basic sub-directory includes an assortment of simple language-specific samples. The advanced
subdirectory includes more advanced samples and code samples that enable you to integrate SCA with your bug
tracking system.

Basic Samples

Table 24 provides a list of the sample files in the basic sub-directory

(<HP _Fortify Install Directory>\Samples\basic),a briefdescription of the sample file, and a list of the
vulnerabilities identified. Each sample includes a README.txt file that provides further details and instructions
on its use.

Table 24: Basic Samples

Sample File Folder Contents Vulnerabilities

cpp Includes a C++ sample file and Command Injection
instructions for testing a simple data flow

o . Memory Leak

vulnerability. It requires a gcc or cl
compiler.

database Includes a database. pks sample file. Access Control: Database
This SQL sample includes issues that can
be found in SQL code.

eightball Includes EightBall.java, aJava Path Manipulation

application that exhibits bad error
handling. It requires an integer as an
argument. If you supply a filtname J2EE Bad Practices: Leftover
instead of an integer, it will display the Debug Code

contents of the file.

Unreleased Resource: Streams

formatstring Includes formatstring.c file. It Format String
requires a gcc or cl compiler.

javascript Includes sample. js, a JavaScript file. Cross Site Scripting (XSS)

Open Redirect

FORTIFY Appendix H: Sample Files 85

Table 24: Basic Samples (Continued)

Sample File Folder Contents Vulnerabilities
nullpointer Includes NullPointerSample.java file. | Null Dereference
php Includes both sink.php and Cross Site Scripting
source.php files. Analyzing _—
source . php surfaces simple Dataflow SQL Injection
vulnerabilities and a dangerous function.
sampleOutput Includes a sample output file Example input for Audit
(WebGoats5. 0. £pr) from the WebGoat Workbench.
project located in the samples/
advanced/webgoat directory.
stackbuffer Includes stackbuffer.c. A gccorcl Buffer Overflow
compiler is required.
toctou Includes toctou.c file. Time-of-Check/Time-of-Use
(Race Condition)
vb6 Includes command-injection.bas file. Command Injection
SQL Injection
vbscript Includes source.asp and sink.asp SQL Injection

files.

Advanced Samples

Table 25 provides a list of the sample files in the advanced subdirectory

(<HP _Fortify Install Directorys>\Samples\advanced). Each sample includes a README.txt file that

provides further details and instructions on its use.

Table 25: Advanced Samples

Sample File Folder

Description

Bugzilla

Includes a Build.xml file built using the Audit Workbench bugtracker
plugin framework. The plugin includes the same functionality as the builtin
Bugzilla plugin so that it can be used as a guide to creating your own plugin.

FORTIFY’

Appendix H: Sample Files

86

Table 25: Advanced Samples (Continued)

Sample File Folder

Description

c++

Includes a sample Visual Studio 2005 solution: Sample.sln, Samplel.cpp,
Sample.vcproj, stafx.cpp, stdafx.h.

You need to have Microsoft Visual Studio Visual C/C++ 2005 (or newer)
installed. You should also have the Fortify Analyzers installed, with the
plugin for the Visual Studio version you are using.

The code includes a Command Injection issue and an Unchecked Return
Value issue.

configuration

This is a sample J2EE application that has vulnerabilities in its web module
deployment descriptor -web . xml .

crosstier

This is a sample that has vulnerabilities spanning multiple application
technologies (Java, PL/SQL, JSP, struts).

The output should contain several issues of different types, including two
Access Control vulnerabilities. One of these is a cross-tier result. It has a
data flow trace from user input in Java code that can affect a SELECT
statement in PL/SQL.

csharp

This is a simple C# program that has SQL injection vulnerabilities. Versions
are included for VS2003, VS2005, VS2010 and VS2012. Upon successful
completion of the scan, you should see the SQL Injection vulnerabilities and
one Unreleased Resource vulnerability. Other categories may also be
present, depending on the rule packs used in the scan.

customrules

Several simple source code samples and Rulepack files that illustrate rules
interpreted by four different analyzers: Semantic, Dataflow, control flow,
and Configuration. This directory also includes several miscellaneous real-
world rules samples that may be used for scanning real applications.

ejb

A sample J2EE cross-tier application with Servlets and E]Bs.

filters

A sample that uses sourceanalyzer’s -filter option.

findbugs

A sample that demonstrates how to run FindBugs static analysis tool
together with the Fortify Source Code Analysis Engine (Fortify SCA Engine)
and filters out results that overlap.

HPQC

A sample that demonstrates the Audit Workbench bugtracker plugin
framework by implementing a plugin to HP Quality Center. This plugin
communicates with an HPQC server instance through the HPQC client-side
addin. The bug tracker talks to the addin through a COM interface, and the
addin handles the communication to the server.

javal.5

Includes ResourceInjection. java. The result file should have a Path
Manipulation result and a J2EE Bad Practices result.

FORTIFY’

Appendix H: Sample Files

87

Table 25: Advanced Samples (Continued)

Sample File Folder

Description

javaAnnotations

Includes a sample application that illustrates problems that may arise from
its use and how to fix the problems using the Fortify Java Annotations.

The goal of this example is to illustrate how the use of Fortify Annotations
can result in increased accuracy in the reported vulnerabilities. The
accompanying README file illustrate the potential problems and solutions
associated with vulnerability results.

JavaDoc

JavaDoc directory for the bugtrackers, public-api, and WSClient.

maven-plugin

Tests can be run on any projects that use Maven (for instance those
included in the samples directory, or WebGoat 5.3: http://code.google.com/

p/webgoat/)

webgoat

WebGoat test J2EE web application provided by the Open Web Application
Security Project (http://www.owasp.org). This directory contains the
WebGoat 5.0 sources.

WebGoat java sources can be used directly for java vulnerability scanning
via Fortify Source Code Analysis Engine.

FORTIFY’

Appendix H: Sample Files

88

This appendix covers the following topics:

e AboutIssue Tuning

e About Interprocedural Constant Propagation

About Issue Tuning

This appendix lists properties that impact the number of issues that SCA reports. The default settings have been
designed to provide optimal results and should not be altered unless you are experiencing a reporting issue or
have been instructed to do so by support.

Issue tuning allows you to fine tune the number and quality of result you receive from an SCA scan. This is an
advanced topic and should not be necessary for the majority of users.

If you feel that SCA is reporting too many or too few issues of a particular type, you may need to adjust a
property to exclude or include additional issues. Before making any changes, you may want to contact support
and discuss the issue you are experiencing.

The following areas can be tuned:

e Wrapper detection
¢ Interprocedural constant propagation

¢ Selective map tracking

If you need to turn one or more of these analysis features off, edit the fortify-sca.properties file,
located in the <install directorys>/Core/config directory.

About Wrapper Detection

Wrapper detection identifies methods that wrap map operations. In SCA, map operations insert <key, value>
pairs to, or retrieve <key, value> pairs from, an associative map. When a tainted value is inserted or retrieved, its
taint may get propagated through the map.

The HP Fortify Software Security Research team (SSR) provides rules describing how various APIs implement
map insertion and retrieval. Taint propagation occurs when methods matching those specified in the rules are
invoked. If SCA cannot compute the map keys used at those methods, then it promotes taint from a single value
to all values in the map. This introduces false positives.

A function is treated as a wrapper method when it:

* Contains a callsite to a method identified by an SSR rule as a map operation or already identified by SCA
as a wrapper.

¢ Directly passes its parameters to the map operation.

¢ Directly passes the map operation's return value to its own return.
The effects of successful wrapper identification include:

¢ Reduction of false issue reports from the Dataflow analyzer by reducing the number of issues reported
with mismatched map insertions and retrievals.

¢ Improved readability of

¢ Dataflow issue reports by replacing unknown map keys, shown as '?', with explicit key values.

FORTIFY Appendix I: Issue Tuning 89

The properties listed in Table 26 control the behavior of wrapper detection:

Table 26: Wrapper Detection Analysis Keys

Analysis Property Description

None Executes wrapper detection, including detection of nested

wrappers

com.fortify.sca.EnableNestedWrappers A value of false disables all nested wrapper detection.

com.fortify.sca.EnableWrapperDetection A value of false disables all wrapper detection

com.fortify.sca.WrapperHeuristic By default, the heuristic used is “moderate”. You can also set this
value to “strict”, which will not identify any methods containing

multiple callsites as wrappers.

About Interprocedural Constant Propagation

Programming languages provide keywords indicating that a variable is a constant, unchanging value
throughout an entire program. However, some software fails to consistently apply these keywords to constant
variables. Interprocedural Constant Propagation identifies explicit constants and variables that are not defined
as constants but have unchanging values, and it then propagates those constant values throughout all functions
in the program.

The properties listed in Table 27 control Interprocedural Constant Propagation.

Table 27: Interprocedural Constant Propagation Keys

Analysis Property

Description

com. fortify.sca.EnableInterprocedu
ralConstantResolution

Enables or disables propagation of constant values across function
boundaries.

com.fortify.sca.DisableInferredCon
stants

If set to “true”, disables identification of constant variables without
explicit const or £inal keywords.

com.fortify.sca.DisableInferredCon
stants.NonStatic

If set to “true”, disables identification of non-static constants.

About Selective Map Operation Tracking

Selective Map Operation Tracking analysis greatly reduces the prevalence of unresolved map keys. This analysis
allows SCA to find true positives in global classes without introducing an increase in the number of false
positives. This algorithm is configurable via a property key that accepts any of four values. The default value,
classrule, is appropriate in most situations. If you find that too many issues are being suppressed, you can
change the value and compare the results received.

FORTIFY Appendix I: Issue Tuning 90

The values listed in Table 3 control Selective Map Operation Tracking.

Table 28: Selective Map Operator Tracking Values

Analysis Property Value Description
com. fortify.sca.RequireMapKey | classrule This is the default value of the property and does
s not need to be set. SCA will analyze data flow

operations on maps global by classrule only when
it can determine keys.

never Set this property equal to “never” to disable
Selective Map Operation Tracking analysis. All
map operations will be analyzed.

globals Set this property equal to “globals” to increase
the aggressiveness of the analysis. SCA will
analyze data flow operations on all global maps
only when it can determine keys.

always Set this property equal to “always” for maximum
aggressiveness. SCA will process data flow
operations on all maps only when it can
determine keys.

FORTIFY Appendix I: Issue Tuning 91

	Preface
	Contacting Fortify Software
	Technical Support
	Corporate Headquarters
	Website

	About the HP Fortify Software Security Center Documentation Set

	Change Log
	Contents
	Chapter 1: Introduction
	About the Intended Audience
	About the HP Fortify Software Security Center Components
	Related Documents

	Chapter 2: HP Fortify Static Code Analyzer
	About HP Fortify Static Code Analyzer
	About Parallel Analysis
	About Analyzers
	About the Analysis Process
	About Analysis Commands
	About Memory Considerations
	About the Translation Phase
	About the Analysis Phase
	About Verification of the Translation and Analysis Phase
	About the HP Fortify Scan Wizard
	About HP Fortify CloudScan

	Chapter 3: Translating Java Code
	About Java Command Line Syntax
	About Java Command Line Examples
	Integrating with Ant using the HP Fortify Ant Compiler Adapter
	Handling Resolution Warnings
	Java Warnings

	Using FindBugs
	Translating J2EE Applications
	Translating the Java Files
	Translating JSP Projects, Configuration Files, and Deployment Descriptors
	J2EE Warnings

	Chapter 4: Translating .NET Source Code
	About the Visual Studio Command Prompt
	About Visual Studio .NET
	Translating Simple .NET Applications
	Translating ASP.NET 1.1 (Visual Studio Version 2003) Projects
	Handling Resolution Warnings
	About .NET Warnings
	About ASP.NET Warnings

	Chapter 5: Translating C/C++ Code
	About C and C++ Command Line Syntax
	C and C++ Command Line Examples

	About Integrating with Make
	Using the HP Fortify Touchless Build Adapter
	Modifying a Makefile to Invoke SCA

	About the HP Fortify Build Monitor
	Configuring HP Fortify Build Monitor
	Monitoring Builds
	Monitoring a Project Example
	About Command Line Builds in Visual Studio .NET
	About Command Line Builds in Visual Studio 6.0

	Chapter 6: Translating ABAP/4
	About Translating ABAP/4 Code
	About Scanning ABAP Code
	About INCLUDE Processing

	Overview of the Process
	About the Transport Request
	Create a Transaction Object
	Adding Fortify SCA to Your Favorites List (optional)
	Running the HP Fortify ABAP Extractor

	Chapter 7: Translating Flex
	About the Command-Line Options
	About ActionScript Command Line Syntax
	ActionScript Command Line Examples
	About Handling Resolution Warnings
	About ActionScript Warnings

	Chapter 8: Translating Code for Mobile Platforms
	About Translating Objective-C Code
	Prerequisites
	About Objective-C Command Line Syntax
	Objective-C Command Line Example
	Xcode Compiler Errors

	About Objective-C on iPhone
	About Translating Google Android Code
	Migration Issues

	Chapter 9: Translating Other Languages
	About Command Line Syntax for Other Languages
	Configuration Considerations
	Configuring Python
	Configuring ColdFusion
	Configuring the SQL Extension
	Configuring ASP/VBScript Virtual Roots
	Other Language Command Line Examples
	Translating PL/SQL Example
	Translating T-SQL Example
	Translating PHP Example
	Translating Classic ASP written with VBScript Example
	Translating JavaScript Example
	Translating VB Script File Example

	Translating COBOL Code
	Supported Technologies
	Preparing COBOL Source Files for Translation
	About COBOL Command Line Syntax
	About Auditing COBOL Scans

	Chapter 10: Troubleshooting and Support
	Using the Log File to Debug Problems
	About the Translation Failed Message
	About JSP Translation Problems
	About ASPX Translation Problems
	About C/C++ Precompiled Header Files
	About Reporting Bugs and Requesting Enhancements

	Appendix A: Command Line Interface
	Output Options
	Analysis Options
	Python Option
	ColdFusion Options
	Java/J2EE Options
	.NET Options
	Build Integration Options
	Directives
	Runtime Options
	Other Options
	Specifying Files

	Appendix B: Parallel Analysis Mode
	About Parallel Analysis Mode
	Hardware Requirements
	Configuring Parallel Analysis Mode
	Running in Parallel Analysis Mode

	Appendix C: Using the sourceanalyzer Ant Task
	About the sourceanalyzer Ant Task
	Using the Ant Sourceanalyzer Task
	Ant properties
	Sourceanalyzer Task Options

	Appendix D: Advanced Options
	About Filter Files
	Filter File Creation Example

	Using Properties to Control Runtime Options
	Specifying the Order of Properties

	Appendix E: MSBuild Integration
	About MSBuild Integration
	Installation
	Setting Windows Environment Variables for Touchless Integration of SCA
	Adding Custom Tasks to your MSBuild Project
	Adding Custom Tasks to Your Project
	Adding Fortify.TranslateTask
	Adding Fortify.ScanTask
	Adding Fortify.CleanTask
	Adding Fortify.SSCTask
	Adding Fortify.CloudScanTask

	Appendix F: Maven Integration
	About the Maven Plugin
	Installing the Maven Plugin
	Updating the Maven Plugin
	Editing the Plugin Source Files
	Testing the Plugin

	Using the Maven Plugin
	Excluding Files from the Scan
	Uninstalling the Maven Plugin
	Additional Documentation

	Appendix G: HP Fortify Scan Wizard
	About the Fortify Scan Wizard

	Appendix H: Sample Files
	About the Sample Files
	Basic Samples
	Advanced Samples

	Appendix I: Issue Tuning
	About Issue Tuning
	About Wrapper Detection

	About Interprocedural Constant Propagation
	About Selective Map Operation Tracking

